| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc11next | Structured version Visualization version Unicode version | ||
| Description: This theorem shows that, given axext4 2606, we can derive a version of axc11n 2307. However, it is weaker than axc11n 2307 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc11next |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ext 2602 |
. . . . . 6
| |
| 2 | 1 | alimi 1739 |
. . . . 5
|
| 3 | ax-11 2034 |
. . . . . . 7
| |
| 4 | ax9 2003 |
. . . . . . . . 9
| |
| 5 | biimpr 210 |
. . . . . . . . . . 11
| |
| 6 | 5 | alimi 1739 |
. . . . . . . . . 10
|
| 7 | stdpc5v 1867 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | syl 17 |
. . . . . . . . 9
|
| 9 | 4, 8 | syl9 77 |
. . . . . . . 8
|
| 10 | 9 | alimdv 1845 |
. . . . . . 7
|
| 11 | 3, 10 | syl5 34 |
. . . . . 6
|
| 12 | 11 | sps 2055 |
. . . . 5
|
| 13 | 2, 12 | mpcom 38 |
. . . 4
|
| 14 | 13 | axc4i 2131 |
. . 3
|
| 15 | nfa1 2028 |
. . . . . . . 8
| |
| 16 | 15 | 19.23 2080 |
. . . . . . 7
|
| 17 | 19.8a 2052 |
. . . . . . . . 9
| |
| 18 | elequ2 2004 |
. . . . . . . . . 10
| |
| 19 | 18 | cbvexv 2275 |
. . . . . . . . 9
|
| 20 | 17, 19 | sylib 208 |
. . . . . . . 8
|
| 21 | 4 | cbvalivw 1934 |
. . . . . . . 8
|
| 22 | 20, 21 | imim12i 62 |
. . . . . . 7
|
| 23 | 16, 22 | sylbi 207 |
. . . . . 6
|
| 24 | 23 | alimi 1739 |
. . . . 5
|
| 25 | 24 | alcoms 2035 |
. . . 4
|
| 26 | 25 | alrimiv 1855 |
. . 3
|
| 27 | nfa1 2028 |
. . . . . . . 8
| |
| 28 | 27 | 19.23 2080 |
. . . . . . 7
|
| 29 | ax9 2003 |
. . . . . . . . . 10
| |
| 30 | 29 | spimv 2257 |
. . . . . . . . 9
|
| 31 | 17, 30 | imim12i 62 |
. . . . . . . 8
|
| 32 | 19.8a 2052 |
. . . . . . . . . 10
| |
| 33 | elequ2 2004 |
. . . . . . . . . . 11
| |
| 34 | 33 | cbvexv 2275 |
. . . . . . . . . 10
|
| 35 | 32, 34 | sylib 208 |
. . . . . . . . 9
|
| 36 | sp 2053 |
. . . . . . . . 9
| |
| 37 | 35, 36 | imim12i 62 |
. . . . . . . 8
|
| 38 | 31, 37 | impbid 202 |
. . . . . . 7
|
| 39 | 28, 38 | sylbi 207 |
. . . . . 6
|
| 40 | 39 | alimi 1739 |
. . . . 5
|
| 41 | 40 | alcoms 2035 |
. . . 4
|
| 42 | 41 | axc4i 2131 |
. . 3
|
| 43 | 14, 26, 42 | 3syl 18 |
. 2
|
| 44 | axext4 2606 |
. . 3
| |
| 45 | 44 | albii 1747 |
. 2
|
| 46 | axext4 2606 |
. . 3
| |
| 47 | 46 | albii 1747 |
. 2
|
| 48 | 43, 45, 47 | 3imtr4i 281 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |