MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axext4 Structured version   Visualization version   Unicode version

Theorem axext4 2606
Description: A bidirectional version of Extensionality. Although this theorem "looks" like it is just a definition of equality, it requires the Axiom of Extensionality for its proof under our axiomatization. See the comments for ax-ext 2602 and df-cleq 2615. (Contributed by NM, 14-Nov-2008.)
Assertion
Ref Expression
axext4  |-  ( x  =  y  <->  A. z
( z  e.  x  <->  z  e.  y ) )
Distinct variable groups:    x, z    y, z

Proof of Theorem axext4
StepHypRef Expression
1 elequ2 2004 . . 3  |-  ( x  =  y  ->  (
z  e.  x  <->  z  e.  y ) )
21alrimiv 1855 . 2  |-  ( x  =  y  ->  A. z
( z  e.  x  <->  z  e.  y ) )
3 axext3 2604 . 2  |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
42, 3impbii 199 1  |-  ( x  =  y  <->  A. z
( z  e.  x  <->  z  e.  y ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  axc11next  38607
  Copyright terms: Public domain W3C validator