| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc16i | Structured version Visualization version Unicode version | ||
| Description: Inference with axc16 2135 as its conclusion. (Contributed by NM, 20-May-2008.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| axc16i.1 |
|
| axc16i.2 |
|
| Ref | Expression |
|---|---|
| axc16i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . 3
| |
| 2 | nfv 1843 |
. . 3
| |
| 3 | ax7 1943 |
. . 3
| |
| 4 | 1, 2, 3 | cbv3 2265 |
. 2
|
| 5 | ax7 1943 |
. . . . 5
| |
| 6 | 5 | spimv 2257 |
. . . 4
|
| 7 | equcomi 1944 |
. . . . . 6
| |
| 8 | equcomi 1944 |
. . . . . . 7
| |
| 9 | ax7 1943 |
. . . . . . 7
| |
| 10 | 8, 9 | syl 17 |
. . . . . 6
|
| 11 | 7, 10 | syl5com 31 |
. . . . 5
|
| 12 | 11 | alimdv 1845 |
. . . 4
|
| 13 | 6, 12 | mpcom 38 |
. . 3
|
| 14 | equcomi 1944 |
. . . 4
| |
| 15 | 14 | alimi 1739 |
. . 3
|
| 16 | 13, 15 | syl 17 |
. 2
|
| 17 | axc16i.1 |
. . . . 5
| |
| 18 | 17 | biimpcd 239 |
. . . 4
|
| 19 | 18 | alimdv 1845 |
. . 3
|
| 20 | axc16i.2 |
. . . . 5
| |
| 21 | 20 | nf5i 2024 |
. . . 4
|
| 22 | nfv 1843 |
. . . 4
| |
| 23 | 17 | biimprd 238 |
. . . . 5
|
| 24 | 14, 23 | syl 17 |
. . . 4
|
| 25 | 21, 22, 24 | cbv3 2265 |
. . 3
|
| 26 | 19, 25 | syl6com 37 |
. 2
|
| 27 | 4, 16, 26 | 3syl 18 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: axc16ALT 2366 |
| Copyright terms: Public domain | W3C validator |