| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axext3 | Structured version Visualization version Unicode version | ||
| Description: A generalization of the
Axiom of Extensionality in which |
| Ref | Expression |
|---|---|
| axext3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2004 |
. . . . . 6
| |
| 2 | 1 | bibi1d 333 |
. . . . 5
|
| 3 | 2 | albidv 1849 |
. . . 4
|
| 4 | ax-ext 2602 |
. . . 4
| |
| 5 | 3, 4 | syl6bir 244 |
. . 3
|
| 6 | ax7 1943 |
. . 3
| |
| 7 | 5, 6 | syld 47 |
. 2
|
| 8 | ax6ev 1890 |
. 2
| |
| 9 | 7, 8 | exlimiiv 1859 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: axext4 2606 dfcleq 2616 axextnd 9413 axextdist 31705 bj-cleqhyp 32892 |
| Copyright terms: Public domain | W3C validator |