Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextndbi Structured version   Visualization version   Unicode version

Theorem axextndbi 31710
Description: axextnd 9413 as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010.)
Assertion
Ref Expression
axextndbi  |-  E. z
( x  =  y  <-> 
( z  e.  x  <->  z  e.  y ) )

Proof of Theorem axextndbi
StepHypRef Expression
1 axextnd 9413 . . 3  |-  E. z
( ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
2 elequ2 2004 . . . 4  |-  ( x  =  y  ->  (
z  e.  x  <->  z  e.  y ) )
32jctl 564 . . 3  |-  ( ( ( z  e.  x  <->  z  e.  y )  ->  x  =  y )  ->  ( ( x  =  y  ->  ( z  e.  x  <->  z  e.  y ) )  /\  (
( z  e.  x  <->  z  e.  y )  ->  x  =  y )
) )
41, 3eximii 1764 . 2  |-  E. z
( ( x  =  y  ->  ( z  e.  x  <->  z  e.  y ) )  /\  (
( z  e.  x  <->  z  e.  y )  ->  x  =  y )
)
5 dfbi2 660 . . 3  |-  ( ( x  =  y  <->  ( z  e.  x  <->  z  e.  y ) )  <->  ( (
x  =  y  -> 
( z  e.  x  <->  z  e.  y ) )  /\  ( ( z  e.  x  <->  z  e.  y )  ->  x  =  y ) ) )
65exbii 1774 . 2  |-  ( E. z ( x  =  y  <->  ( z  e.  x  <->  z  e.  y ) )  <->  E. z
( ( x  =  y  ->  ( z  e.  x  <->  z  e.  y ) )  /\  (
( z  e.  x  <->  z  e.  y )  ->  x  =  y )
) )
74, 6mpbir 221 1  |-  E. z
( x  =  y  <-> 
( z  e.  x  <->  z  e.  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-cleq 2615  df-clel 2618  df-nfc 2753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator