| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > distel | Structured version Visualization version Unicode version | ||
| Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 4847 and elirrv 8504.) (Contributed by Scott Fenton, 15-Dec-2010.) |
| Ref | Expression |
|---|---|
| distel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el 4847 |
. . 3
| |
| 2 | df-ex 1705 |
. . . 4
| |
| 3 | nfnae 2318 |
. . . . . 6
| |
| 4 | dveel1 2370 |
. . . . . . . 8
| |
| 5 | 3, 4 | nf5d 2118 |
. . . . . . 7
|
| 6 | 5 | nfnd 1785 |
. . . . . 6
|
| 7 | elequ2 2004 |
. . . . . . . 8
| |
| 8 | 7 | notbid 308 |
. . . . . . 7
|
| 9 | 8 | a1i 11 |
. . . . . 6
|
| 10 | 3, 6, 9 | cbvald 2277 |
. . . . 5
|
| 11 | 10 | notbid 308 |
. . . 4
|
| 12 | 2, 11 | syl5bb 272 |
. . 3
|
| 13 | 1, 12 | mpbii 223 |
. 2
|
| 14 | elirrv 8504 |
. . . . 5
| |
| 15 | elequ1 1997 |
. . . . 5
| |
| 16 | 14, 15 | mtbii 316 |
. . . 4
|
| 17 | 16 | alimi 1739 |
. . 3
|
| 18 | 17 | con3i 150 |
. 2
|
| 19 | 13, 18 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |