| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baspartn | Structured version Visualization version Unicode version | ||
| Description: A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| baspartn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 |
. . . . . . . . 9
| |
| 2 | pwidg 4173 |
. . . . . . . . 9
| |
| 3 | 1, 2 | elind 3798 |
. . . . . . . 8
|
| 4 | elssuni 4467 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
|
| 6 | inidm 3822 |
. . . . . . . . 9
| |
| 7 | ineq2 3808 |
. . . . . . . . 9
| |
| 8 | 6, 7 | syl5eqr 2670 |
. . . . . . . 8
|
| 9 | 8 | pweqd 4163 |
. . . . . . . . . 10
|
| 10 | 9 | ineq2d 3814 |
. . . . . . . . 9
|
| 11 | 10 | unieqd 4446 |
. . . . . . . 8
|
| 12 | 8, 11 | sseq12d 3634 |
. . . . . . 7
|
| 13 | 5, 12 | syl5ibcom 235 |
. . . . . 6
|
| 14 | 0ss 3972 |
. . . . . . . 8
| |
| 15 | sseq1 3626 |
. . . . . . . 8
| |
| 16 | 14, 15 | mpbiri 248 |
. . . . . . 7
|
| 17 | 16 | a1i 11 |
. . . . . 6
|
| 18 | 13, 17 | jaod 395 |
. . . . 5
|
| 19 | 18 | ralimdv 2963 |
. . . 4
|
| 20 | 19 | ralimia 2950 |
. . 3
|
| 21 | 20 | adantl 482 |
. 2
|
| 22 | isbasisg 20751 |
. . 3
| |
| 23 | 22 | adantr 481 |
. 2
|
| 24 | 21, 23 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-uni 4437 df-bases 20750 |
| This theorem is referenced by: kelac2lem 37634 |
| Copyright terms: Public domain | W3C validator |