MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biantr Structured version   Visualization version   Unicode version

Theorem biantr 972
Description: A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
biantr  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  ps )
)  ->  ( ph  <->  ch ) )

Proof of Theorem biantr
StepHypRef Expression
1 id 22 . . 3  |-  ( ( ch  <->  ps )  ->  ( ch 
<->  ps ) )
21bibi2d 332 . 2  |-  ( ( ch  <->  ps )  ->  (
( ph  <->  ch )  <->  ( ph  <->  ps ) ) )
32biimparc 504 1  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  ps )
)  ->  ( ph  <->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  bm1.1  2607  bitr3VD  39084  sbcoreleleqVD  39095  trsbcVD  39113  sbcssgVD  39119
  Copyright terms: Public domain W3C validator