Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsbcVD Structured version   Visualization version   Unicode version

Theorem trsbcVD 39113
Description: Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trsbc 38750 is trsbcVD 39113 without virtual deductions and was automatically derived from trsbcVD 39113.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
3:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  x  <->  y  e.  A ) ).
4:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  x  <->  z  e.  A ) ).
5:1,2,3,4:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
6:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) ) ).
7:5,6:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
8::  |-  ( ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
9:7,8:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
10::  |-  ( ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
11:10:  |-  A. x ( ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
12:1,11:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
13:9,12:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
14:13:  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
15:14:  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
16:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
17:15,16:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
18:17:  |-  (. A  e.  B  ->.  A. z ( [. A  /  x ]. A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
19:18:  |-  (. A  e.  B  ->.  ( A. z [. A  /  x ]. A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
20:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
21:19,20:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
22::  |-  ( Tr  A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
23:21,22:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A ) ).
24::  |-  ( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
25:24:  |-  A. x ( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
26:1,25:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
27:23,26:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  Tr  A ) ).
qed:27:  |-  ( A  e.  B  ->  ( [. A  /  x ]. Tr  x  <->  Tr  A ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsbcVD  |-  ( A  e.  B  ->  ( [. A  /  x ]. Tr  x  <->  Tr  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem trsbcVD
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 38790 . . . . . . . . . . . . . 14  |-  (. A  e.  B  ->.  A  e.  B ).
2 biidd 252 . . . . . . . . . . . . . . . 16  |-  ( x  =  A  ->  (
z  e.  y  <->  z  e.  y ) )
32sbcieg 3468 . . . . . . . . . . . . . . 15  |-  ( A  e.  B  ->  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) )
41, 3e1a 38852 . . . . . . . . . . . . . 14  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
5 sbcel2gv 3496 . . . . . . . . . . . . . . 15  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  x  <->  y  e.  A ) )
61, 5e1a 38852 . . . . . . . . . . . . . 14  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  x  <->  y  e.  A
) ).
7 sbcel2gv 3496 . . . . . . . . . . . . . . 15  |-  ( A  e.  B  ->  ( [. A  /  x ]. z  e.  x  <->  z  e.  A ) )
81, 7e1a 38852 . . . . . . . . . . . . . 14  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  x  <->  z  e.  A
) ).
9 imbi13 38726 . . . . . . . . . . . . . . 15  |-  ( (
[. A  /  x ]. z  e.  y  <->  z  e.  y )  -> 
( ( [. A  /  x ]. y  e.  x  <->  y  e.  A
)  ->  ( ( [. A  /  x ]. z  e.  x  <->  z  e.  A )  -> 
( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ) ) )
109a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  B  ->  (
( [. A  /  x ]. z  e.  y  <->  z  e.  y )  -> 
( ( [. A  /  x ]. y  e.  x  <->  y  e.  A
)  ->  ( ( [. A  /  x ]. z  e.  x  <->  z  e.  A )  -> 
( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ) ) ) )
111, 4, 6, 8, 10e1111 38900 . . . . . . . . . . . . 13  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
12 sbcim2g 38748 . . . . . . . . . . . . . 14  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) ) )
131, 12e1a 38852 . . . . . . . . . . . . 13  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) ) ).
14 bibi1 341 . . . . . . . . . . . . . 14  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) )  ->  ( ( [. A  /  x ]. (
z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) )  <-> 
( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ) )
1514biimprcd 240 . . . . . . . . . . . . 13  |-  ( ( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x
) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) )  ->  ( ( [. A  /  x ]. (
z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) )  ->  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ) )
1611, 13, 15e11 38913 . . . . . . . . . . . 12  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
17 pm3.31 461 . . . . . . . . . . . . 13  |-  ( ( z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  ->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
18 pm3.3 460 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A )  ->  (
z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) ) )
1917, 18impbii 199 . . . . . . . . . . . 12  |-  ( ( z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
20 bibi1 341 . . . . . . . . . . . . 13  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) )  ->  ( ( [. A  /  x ]. (
z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  <->  ( (
z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
2120biimprd 238 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) )  ->  ( ( ( z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
2216, 19, 21e10 38919 . . . . . . . . . . 11  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
23 pm3.31 461 . . . . . . . . . . . . . 14  |-  ( ( z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
24 pm3.3 460 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  y  /\  y  e.  x
)  ->  z  e.  x )  ->  (
z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) ) )
2523, 24impbii 199 . . . . . . . . . . . . 13  |-  ( ( z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
2625ax-gen 1722 . . . . . . . . . . . 12  |-  A. x
( ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
27 sbcbi 38749 . . . . . . . . . . . 12  |-  ( A  e.  B  ->  ( A. x ( ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ) )
281, 26, 27e10 38919 . . . . . . . . . . 11  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
29 bitr3 342 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
3029com12 32 . . . . . . . . . . 11  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  ->  ( ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
3122, 28, 30e11 38913 . . . . . . . . . 10  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <-> 
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
3231gen11 38841 . . . . . . . . 9  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
33 albi 1746 . . . . . . . . 9  |-  ( A. y ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <-> 
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( A. y [. A  /  x ]. (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
3432, 33e1a 38852 . . . . . . . 8  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
35 sbcalgOLD 38752 . . . . . . . . 9  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
361, 35e1a 38852 . . . . . . . 8  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
37 bibi1 341 . . . . . . . . 9  |-  ( (
[. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  <->  ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
3837biimprcd 240 . . . . . . . 8  |-  ( ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
3934, 36, 38e11 38913 . . . . . . 7  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
4039gen11 38841 . . . . . 6  |-  (. A  e.  B  ->.  A. z ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
41 albi 1746 . . . . . 6  |-  ( A. z ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
4240, 41e1a 38852 . . . . 5  |-  (. A  e.  B  ->.  ( A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A ) ) ).
43 sbcalgOLD 38752 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
441, 43e1a 38852 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
45 bibi1 341 . . . . . 6  |-  ( (
[. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  ->  ( ( [. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  <->  ( A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A ) ) ) )
4645biimprcd 240 . . . . 5  |-  ( ( A. z [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  ->  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A ) ) ) )
4742, 44, 46e11 38913 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
48 dftr2 4754 . . . 4  |-  ( Tr  A  <->  A. z A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
49 biantr 972 . . . . 5  |-  ( ( ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  /\  ( Tr  A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )  ->  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A
) )
5049ex 450 . . . 4  |-  ( (
[. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( ( Tr  A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A ) )  -> 
( [. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A
) ) )
5147, 48, 50e10 38919 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A
) ).
52 dftr2 4754 . . . . 5  |-  ( Tr  x  <->  A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
5352ax-gen 1722 . . . 4  |-  A. x
( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
54 sbcbi 38749 . . . 4  |-  ( A  e.  B  ->  ( A. x ( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )  -> 
( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ) )
551, 53, 54e10 38919 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) ) ).
56 bibi1 341 . . . 4  |-  ( (
[. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( ( [. A  /  x ]. Tr  x  <->  Tr  A )  <->  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A ) ) )
5756biimprcd 240 . . 3  |-  ( (
[. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A
)  ->  ( ( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( [. A  /  x ]. Tr  x  <->  Tr  A
) ) )
5851, 55, 57e11 38913 . 2  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  Tr  A ) ).
5958in1 38787 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. Tr  x  <->  Tr  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   [.wsbc 3435   Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-in 3581  df-ss 3588  df-uni 4437  df-tr 4753  df-vd1 38786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator