Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssgVD Structured version   Visualization version   Unicode version

Theorem sbcssgVD 39119
Description: Virtual deduction proof of sbcssg 4085. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 4085 is sbcssgVD 39119 without virtual deductions and was automatically derived from sbcssgVD 39119.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) ).
3:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) ).
4:2,3:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D  ) ) ).
5:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) ) ).
6:4,5:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
7:6:  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
8:7:  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D )  ) ).
9:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) ).
10:8,9:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D )  ) ).
11::  |-  ( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
110:11:  |-  A. x ( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
12:1,110:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D ) ) ).
13:10,12:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
14::  |-  ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A.  y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
15:13,14:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ).
qed:15:  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_  A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssgVD  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )

Proof of Theorem sbcssgVD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 idn1 38790 . . . . . . . . . 10  |-  (. A  e.  B  ->.  A  e.  B ).
2 sbcel2gOLD 38755 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
31, 2e1a 38852 . . . . . . . . 9  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C
) ).
4 sbcel2gOLD 38755 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) )
51, 4e1a 38852 . . . . . . . . 9  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
) ).
6 imbi12 336 . . . . . . . . 9  |-  ( (
[. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C )  -> 
( ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
)  ->  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
73, 5, 6e11 38913 . . . . . . . 8  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
8 sbcimg 3477 . . . . . . . . 9  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) ) )
91, 8e1a 38852 . . . . . . . 8  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) ) ).
10 bibi1 341 . . . . . . . . 9  |-  ( (
[. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) )  ->  (
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
1110biimprcd 240 . . . . . . . 8  |-  ( ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) )  -> 
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
127, 9, 11e11 38913 . . . . . . 7  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
1312gen11 38841 . . . . . 6  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
14 albi 1746 . . . . . 6  |-  ( A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( A. y [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) )
1513, 14e1a 38852 . . . . 5  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
16 sbcalgOLD 38752 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) )
171, 16e1a 38852 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) ).
18 bibi1 341 . . . . . 6  |-  ( (
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) )  ->  ( ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
1918biimprcd 240 . . . . 5  |-  ( ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) )  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
2015, 17, 19e11 38913 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
21 dfss2 3591 . . . . . 6  |-  ( C 
C_  D  <->  A. y
( y  e.  C  ->  y  e.  D ) )
2221ax-gen 1722 . . . . 5  |-  A. x
( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
23 sbcbi 38749 . . . . 5  |-  ( A  e.  B  ->  ( A. x ( C  C_  D 
<-> 
A. y ( y  e.  C  ->  y  e.  D ) )  -> 
( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) ) ) )
241, 22, 23e10 38919 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D ) ) ).
25 bibi1 341 . . . . 5  |-  ( (
[. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) )  ->  ( ( [. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
2625biimprcd 240 . . . 4  |-  ( (
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) )  ->  ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
2720, 24, 26e11 38913 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
28 dfss2 3591 . . 3  |-  ( [_ A  /  x ]_ C  C_ 
[_ A  /  x ]_ D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
29 biantr 972 . . . 4  |-  ( ( ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  /\  ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
3029ex 450 . . 3  |-  ( (
[. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ) )
3127, 28, 30e10 38919 . 2  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
[_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ).
3231in1 38787 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    e. wcel 1990   [.wsbc 3435   [_csb 3533    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-in 3581  df-ss 3588  df-vd1 38786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator