Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abbi Structured version   Visualization version   Unicode version

Theorem bj-abbi 32775
Description: Remove dependency on ax-13 2246 from abbi 2737. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abbi  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )

Proof of Theorem bj-abbi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2616 . 2  |-  ( { x  |  ph }  =  { x  |  ps } 
<-> 
A. y ( y  e.  { x  | 
ph }  <->  y  e.  { x  |  ps }
) )
2 bj-nfsab1 32772 . . . 4  |-  F/ x  y  e.  { x  |  ph }
3 bj-nfsab1 32772 . . . 4  |-  F/ x  y  e.  { x  |  ps }
42, 3nfbi 1833 . . 3  |-  F/ x
( y  e.  {
x  |  ph }  <->  y  e.  { x  |  ps } )
5 nfv 1843 . . 3  |-  F/ y ( ph  <->  ps )
6 df-clab 2609 . . . . 5  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
7 sbequ12r 2112 . . . . 5  |-  ( y  =  x  ->  ( [ y  /  x ] ph  <->  ph ) )
86, 7syl5bb 272 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  ph ) )
9 df-clab 2609 . . . . 5  |-  ( y  e.  { x  |  ps }  <->  [ y  /  x ] ps )
10 sbequ12r 2112 . . . . 5  |-  ( y  =  x  ->  ( [ y  /  x ] ps  <->  ps ) )
119, 10syl5bb 272 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ps }  <->  ps )
)
128, 11bibi12d 335 . . 3  |-  ( y  =  x  ->  (
( y  e.  {
x  |  ph }  <->  y  e.  { x  |  ps } )  <->  ( ph  <->  ps ) ) )
134, 5, 12cbvalv1 2175 . 2  |-  ( A. y ( y  e. 
{ x  |  ph } 
<->  y  e.  { x  |  ps } )  <->  A. x
( ph  <->  ps ) )
141, 13bitr2i 265 1  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   A.wal 1481    = wceq 1483   [wsb 1880    e. wcel 1990   {cab 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615
This theorem is referenced by:  bj-abbii  32777  bj-abbid  32778
  Copyright terms: Public domain W3C validator