Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abbi Structured version   Visualization version   GIF version

Theorem bj-abbi 32775
Description: Remove dependency on ax-13 2246 from abbi 2737. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abbi (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem bj-abbi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2616 . 2 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}))
2 bj-nfsab1 32772 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
3 bj-nfsab1 32772 . . . 4 𝑥 𝑦 ∈ {𝑥𝜓}
42, 3nfbi 1833 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓})
5 nfv 1843 . . 3 𝑦(𝜑𝜓)
6 df-clab 2609 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
7 sbequ12r 2112 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
86, 7syl5bb 272 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
9 df-clab 2609 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
10 sbequ12r 2112 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜓𝜓))
119, 10syl5bb 272 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜓} ↔ 𝜓))
128, 11bibi12d 335 . . 3 (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ (𝜑𝜓)))
134, 5, 12cbvalv1 2175 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
141, 13bitr2i 265 1 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1481   = wceq 1483  [wsb 1880  wcel 1990  {cab 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615
This theorem is referenced by:  bj-abbii  32777  bj-abbid  32778
  Copyright terms: Public domain W3C validator