Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-alsb Structured version   Visualization version   Unicode version

Theorem bj-alsb 32625
Description: If a proposition is true for all instances, then it is true for any specific one. Uses only ax-1--5. Compare stdpc4 2353 which uses auxiliary axioms. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-alsb  |-  ( A. x ph  -> [ t/ x]b ph )

Proof of Theorem bj-alsb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ala1 1741 . . . 4  |-  ( A. x ph  ->  A. x
( x  =  y  ->  ph ) )
21a1d 25 . . 3  |-  ( A. x ph  ->  ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
32alrimiv 1855 . 2  |-  ( A. x ph  ->  A. y
( y  =  t  ->  A. x ( x  =  y  ->  ph )
) )
4 df-ssb 32620 . 2  |-  ([ t/ x]b ph  <->  A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
53, 4sylibr 224 1  |-  ( A. x ph  -> [ t/ x]b ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481  [wssb 32619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839
This theorem depends on definitions:  df-bi 197  df-ssb 32620
This theorem is referenced by:  bj-ssbft  32642
  Copyright terms: Public domain W3C validator