MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdpc4 Structured version   Visualization version   Unicode version

Theorem stdpc4 2353
Description: The specialization axiom of standard predicate calculus. It states that if a statement  ph holds for all  x, then it also holds for the specific case of  y (properly) substituted for  x. Translated to traditional notation, it can be read: " A. x ph ( x )  ->  ph ( y ), provided that  y is free for  x in  ph (
x )." Axiom 4 of [Mendelson] p. 69. See also spsbc 3448 and rspsbc 3518. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
stdpc4  |-  ( A. x ph  ->  [ y  /  x ] ph )

Proof of Theorem stdpc4
StepHypRef Expression
1 ala1 1741 . 2  |-  ( A. x ph  ->  A. x
( x  =  y  ->  ph ) )
2 sb2 2352 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
31, 2syl 17 1  |-  ( A. x ph  ->  [ y  /  x ] ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881
This theorem is referenced by:  2stdpc4  2354  sbft  2379  spsbim  2394  spsbbi  2402  sbt  2419  sbtrt  2420  pm13.183  3344  spsbc  3448  nd1  9409  nd2  9410  bj-vexwt  32854  axfrege58b  38194  pm10.14  38558  pm11.57  38589
  Copyright terms: Public domain W3C validator