Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12i Structured version   Visualization version   Unicode version

Theorem bj-ax12i 32616
Description: A weakening of bj-ax12ig 32615 that is sufficient to prove a weak form of the axiom of substitution ax-12 2047. The general statement of which ax12i 1879 is an instance. (Contributed by BJ, 29-Sep-2019.)
Hypotheses
Ref Expression
bj-ax12i.1  |-  ( ph  ->  ( ps  <->  ch )
)
bj-ax12i.2  |-  ( ch 
->  A. x ch )
Assertion
Ref Expression
bj-ax12i  |-  ( ph  ->  ( ps  ->  A. x
( ph  ->  ps )
) )

Proof of Theorem bj-ax12i
StepHypRef Expression
1 bj-ax12i.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
2 bj-ax12i.2 . . 3  |-  ( ch 
->  A. x ch )
32a1i 11 . 2  |-  ( ph  ->  ( ch  ->  A. x ch ) )
41, 3bj-ax12ig 32615 1  |-  ( ph  ->  ( ps  ->  A. x
( ph  ->  ps )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  bj-ax12wlem  32617
  Copyright terms: Public domain W3C validator