Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12ig Structured version   Visualization version   Unicode version

Theorem bj-ax12ig 32615
Description: A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i 32616. (Contributed by BJ, 19-Dec-2020.)
Hypotheses
Ref Expression
bj-ax12ig.1  |-  ( ph  ->  ( ps  <->  ch )
)
bj-ax12ig.2  |-  ( ph  ->  ( ch  ->  A. x ch ) )
Assertion
Ref Expression
bj-ax12ig  |-  ( ph  ->  ( ps  ->  A. x
( ph  ->  ps )
) )

Proof of Theorem bj-ax12ig
StepHypRef Expression
1 bj-ax12ig.1 . . . 4  |-  ( ph  ->  ( ps  <->  ch )
)
21pm5.32i 669 . . 3  |-  ( (
ph  /\  ps )  <->  (
ph  /\  ch )
)
3 bj-ax12ig.2 . . . . 5  |-  ( ph  ->  ( ch  ->  A. x ch ) )
43imp 445 . . . 4  |-  ( (
ph  /\  ch )  ->  A. x ch )
51biimprcd 240 . . . 4  |-  ( ch 
->  ( ph  ->  ps ) )
64, 5sylg 1750 . . 3  |-  ( (
ph  /\  ch )  ->  A. x ( ph  ->  ps ) )
72, 6sylbi 207 . 2  |-  ( (
ph  /\  ps )  ->  A. x ( ph  ->  ps ) )
87ex 450 1  |-  ( ph  ->  ( ps  ->  A. x
( ph  ->  ps )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  bj-ax12i  32616
  Copyright terms: Public domain W3C validator