Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbvexivw Structured version   Visualization version   Unicode version

Theorem bj-cbvexivw 32660
Description: Change bound variable. This is to cbvexvw 1970 what cbvalivw 1934 is to cbvalvw 1969. [TODO: move after cbvalivw 1934]. (Contributed by BJ, 17-Mar-2020.)
Hypothesis
Ref Expression
bj-cbvexivw.1  |-  ( y  =  x  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
bj-cbvexivw  |-  ( E. x ph  ->  E. y ps )
Distinct variable groups:    x, y    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem bj-cbvexivw
StepHypRef Expression
1 ax5e 1841 . 2  |-  ( E. x E. y ps 
->  E. y ps )
2 ax-5 1839 . 2  |-  ( ph  ->  A. y ph )
3 bj-cbvexivw.1 . 2  |-  ( y  =  x  ->  ( ph  ->  ps ) )
41, 2, 3bj-cbvexiw 32659 1  |-  ( E. x ph  ->  E. y ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator