Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-modald Structured version   Visualization version   Unicode version

Theorem bj-modald 32661
Description: A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021.)
Assertion
Ref Expression
bj-modald  |-  ( A. x  -.  ph  ->  -.  A. x ph )

Proof of Theorem bj-modald
StepHypRef Expression
1 19.2 1892 . . 3  |-  ( A. x ph  ->  E. x ph )
2 df-ex 1705 . . 3  |-  ( E. x ph  <->  -.  A. x  -.  ph )
31, 2sylib 208 . 2  |-  ( A. x ph  ->  -.  A. x  -.  ph )
43con2i 134 1  |-  ( A. x  -.  ph  ->  -.  A. x ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator