![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvexw | Structured version Visualization version Unicode version |
Description: Change bound variable. This is to cbvexvw 1970 what cbvalw 1968 is to cbvalvw 1969. (Contributed by BJ, 17-Mar-2020.) |
Ref | Expression |
---|---|
bj-cbvexw.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-cbvexw.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-cbvexw.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-cbvexw.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-cbvexw.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bj-cbvexw |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-cbvexw.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bj-cbvexw.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | bj-cbvexw.5 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | equcoms 1947 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | biimpd 219 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 5 | bj-cbvexiw 32659 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | bj-cbvexw.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | bj-cbvexw.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 3 | biimprd 238 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 7, 8, 9 | bj-cbvexiw 32659 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 6, 10 | impbii 199 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |