Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eqs Structured version   Visualization version   Unicode version

Theorem bj-eqs 32663
Description: A lemma for substitutions, proved from Tarski's FOL. The version without DV( x,  y) is true but requires ax-13 2246. The DV condition DV(  x,  ph) is necessary for both directions: consider substituting  x  =  z for  ph. (Contributed by BJ, 25-May-2021.)
Assertion
Ref Expression
bj-eqs  |-  ( ph  <->  A. x ( x  =  y  ->  ph ) )
Distinct variable groups:    x, y    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem bj-eqs
StepHypRef Expression
1 ax-1 6 . . 3  |-  ( ph  ->  ( x  =  y  ->  ph ) )
21alrimiv 1855 . 2  |-  ( ph  ->  A. x ( x  =  y  ->  ph )
)
3 exim 1761 . . 3  |-  ( A. x ( x  =  y  ->  ph )  -> 
( E. x  x  =  y  ->  E. x ph ) )
4 ax6ev 1890 . . . 4  |-  E. x  x  =  y
5 pm2.27 42 . . . 4  |-  ( E. x  x  =  y  ->  ( ( E. x  x  =  y  ->  E. x ph )  ->  E. x ph )
)
64, 5ax-mp 5 . . 3  |-  ( ( E. x  x  =  y  ->  E. x ph )  ->  E. x ph )
7 ax5e 1841 . . 3  |-  ( E. x ph  ->  ph )
83, 6, 73syl 18 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  ph )
92, 8impbii 199 1  |-  ( ph  <->  A. x ( x  =  y  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  bj-sb  32677
  Copyright terms: Public domain W3C validator