Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvelimdv Structured version   Visualization version   Unicode version

Theorem bj-dvelimdv 32834
Description: Deduction form of dvelim 2337 with DV conditions. Uncurried (imported) form of bj-dvelimdv 32834. Typically,  z is a fresh variable used for the implicit substitution hypothesis that results in  ch (namely,  ps can be thought as  ps ( x ,  y ) and  ch as  ps ( x ,  z )). So the theorem says that if x is effectively free in  ps ( x ,  z ), then if x and y are not the same variable, then  x is also effectively free in  ps ( x ,  y ), in a context  ph.

One can weakend the implicit substitution hypothesis by adding the antecedent  ph but this typically does not make the theorem much more useful. Similarly, one could use non-freeness hypotheses instead of DV conditions but since this result is typically used when  z is a dummy variable, this would not be of much benefit. One could also remove DV(z,x) since in the proof nfv 1843 can be replaced with nfal 2153 followed by nfn 1784.

Remark: nfald 2165 uses ax-11 2034; it might be possible to inline and use ax11w 2007 instead, but there is still a use via 19.12 2164 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)

Hypotheses
Ref Expression
bj-dvelimdv.nf  |-  F/ x ph
bj-dvelimdv.nf1  |-  ( ph  ->  F/ x ch )
bj-dvelimdv.is  |-  ( z  =  y  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
bj-dvelimdv  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ps )
Distinct variable groups:    x, z    y, z    ph, z    ps, z
Allowed substitution hints:    ph( x, y)    ps( x, y)    ch( x, y, z)

Proof of Theorem bj-dvelimdv
StepHypRef Expression
1 bj-dvelimdv.is . . . 4  |-  ( z  =  y  ->  ( ch 
<->  ps ) )
21equsalvw 1931 . . 3  |-  ( A. z ( z  =  y  ->  ch )  <->  ps )
32bicomi 214 . 2  |-  ( ps  <->  A. z ( z  =  y  ->  ch )
)
4 nfv 1843 . . . 4  |-  F/ z
ph
5 nfv 1843 . . . 4  |-  F/ z  -.  A. x  x  =  y
64, 5nfan 1828 . . 3  |-  F/ z ( ph  /\  -.  A. x  x  =  y )
7 nfeqf2 2297 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  F/ x  z  =  y )
87adantl 482 . . . 4  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x  z  =  y )
9 bj-dvelimdv.nf1 . . . . 5  |-  ( ph  ->  F/ x ch )
109adantr 481 . . . 4  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ch )
118, 10nfimd 1823 . . 3  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ( z  =  y  ->  ch ) )
126, 11nfald 2165 . 2  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x A. z
( z  =  y  ->  ch ) )
133, 12nfxfrd 1780 1  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator