MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf2 Structured version   Visualization version   Unicode version

Theorem nfeqf2 2297
Description: An equation between setvar is free of any other setvar. (Contributed by Wolf Lammen, 9-Jun-2019.)
Assertion
Ref Expression
nfeqf2  |-  ( -. 
A. x  x  =  y  ->  F/ x  z  =  y )
Distinct variable group:    x, z

Proof of Theorem nfeqf2
StepHypRef Expression
1 exnal 1754 . 2  |-  ( E. x  -.  x  =  y  <->  -.  A. x  x  =  y )
2 nfnf1 2031 . . 3  |-  F/ x F/ x  z  =  y
3 ax13lem2 2296 . . . . 5  |-  ( -.  x  =  y  -> 
( E. x  z  =  y  ->  z  =  y ) )
4 ax13lem1 2248 . . . . 5  |-  ( -.  x  =  y  -> 
( z  =  y  ->  A. x  z  =  y ) )
53, 4syld 47 . . . 4  |-  ( -.  x  =  y  -> 
( E. x  z  =  y  ->  A. x  z  =  y )
)
6 df-nf 1710 . . . 4  |-  ( F/ x  z  =  y  <-> 
( E. x  z  =  y  ->  A. x  z  =  y )
)
75, 6sylibr 224 . . 3  |-  ( -.  x  =  y  ->  F/ x  z  =  y )
82, 7exlimi 2086 . 2  |-  ( E. x  -.  x  =  y  ->  F/ x  z  =  y )
91, 8sylbir 225 1  |-  ( -. 
A. x  x  =  y  ->  F/ x  z  =  y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  dveeq2  2298  nfeqf1  2299  sbal1  2460  copsexg  4956  axrepndlem1  9414  axpowndlem2  9420  axpowndlem3  9421  bj-dvelimdv  32834  bj-dvelimdv1  32835  wl-equsb3  33337  wl-sbcom2d-lem1  33342  wl-mo2df  33352  wl-eudf  33354  wl-euequ1f  33356
  Copyright terms: Public domain W3C validator