Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbsb Structured version   Visualization version   Unicode version

Theorem bj-sbsb 32824
Description: Biconditional showing two possible (dual) definitions of substitution df-sb 1881 not using dummy variables. (Contributed by BJ, 19-Mar-2021.)
Assertion
Ref Expression
bj-sbsb  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  <->  ( A. x
( x  =  y  ->  ph )  \/  (
x  =  y  /\  ph ) ) )

Proof of Theorem bj-sbsb
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  ->  ( x  =  y  ->  ph )
)
2 pm2.27 42 . . . . . 6  |-  ( x  =  y  ->  (
( x  =  y  ->  ph )  ->  ph )
)
32anc2li 580 . . . . 5  |-  ( x  =  y  ->  (
( x  =  y  ->  ph )  ->  (
x  =  y  /\  ph ) ) )
43sps 2055 . . . 4  |-  ( A. x  x  =  y  ->  ( ( x  =  y  ->  ph )  -> 
( x  =  y  /\  ph ) ) )
5 olc 399 . . . 4  |-  ( ( x  =  y  /\  ph )  ->  ( A. x ( x  =  y  ->  ph )  \/  ( x  =  y  /\  ph ) ) )
61, 4, 5syl56 36 . . 3  |-  ( A. x  x  =  y  ->  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) )  ->  ( A. x ( x  =  y  ->  ph )  \/  ( x  =  y  /\  ph ) ) ) )
7 simpr 477 . . . 4  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  ->  E. x
( x  =  y  /\  ph ) )
8 equs5 2351 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) ) )
98biimpd 219 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) )
10 orc 400 . . . 4  |-  ( A. x ( x  =  y  ->  ph )  -> 
( A. x ( x  =  y  ->  ph )  \/  (
x  =  y  /\  ph ) ) )
117, 9, 10syl56 36 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( (
( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  ->  ( A. x ( x  =  y  ->  ph )  \/  ( x  =  y  /\  ph ) ) ) )
126, 11pm2.61i 176 . 2  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  ->  ( A. x ( x  =  y  ->  ph )  \/  ( x  =  y  /\  ph ) ) )
13 sp 2053 . . . 4  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
14 pm3.4 584 . . . 4  |-  ( ( x  =  y  /\  ph )  ->  ( x  =  y  ->  ph )
)
1513, 14jaoi 394 . . 3  |-  ( ( A. x ( x  =  y  ->  ph )  \/  ( x  =  y  /\  ph ) )  ->  ( x  =  y  ->  ph ) )
16 equs4 2290 . . . 4  |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ( x  =  y  /\  ph )
)
17 19.8a 2052 . . . 4  |-  ( ( x  =  y  /\  ph )  ->  E. x
( x  =  y  /\  ph ) )
1816, 17jaoi 394 . . 3  |-  ( ( A. x ( x  =  y  ->  ph )  \/  ( x  =  y  /\  ph ) )  ->  E. x ( x  =  y  /\  ph ) )
1915, 18jca 554 . 2  |-  ( ( A. x ( x  =  y  ->  ph )  \/  ( x  =  y  /\  ph ) )  ->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) ) )
2012, 19impbii 199 1  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  <->  ( A. x
( x  =  y  ->  ph )  \/  (
x  =  y  /\  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  bj-dfsb2  32825
  Copyright terms: Public domain W3C validator