| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equs5 | Structured version Visualization version Unicode version | ||
| Description: Lemma used in proofs of
substitution properties. If there is a dv
condition on |
| Ref | Expression |
|---|---|
| equs5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfna1 2029 |
. . 3
| |
| 2 | nfa1 2028 |
. . 3
| |
| 3 | axc15 2303 |
. . . 4
| |
| 4 | 3 | impd 447 |
. . 3
|
| 5 | 1, 2, 4 | exlimd 2087 |
. 2
|
| 6 | equs4 2290 |
. 2
| |
| 7 | 5, 6 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: sb3 2355 sb4 2356 bj-sbsb 32824 |
| Copyright terms: Public domain | W3C validator |