MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs4 Structured version   Visualization version   Unicode version

Theorem equs4 2290
Description: Lemma used in proofs of implicit substitution properties. The converse requires either a dv condition (sb56 2150) or a non-freeness hypothesis (equs45f 2350). See equs4v 1930 for a version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) (Proof shortened by Wolf Lammen, 5-Feb-2018.)
Assertion
Ref Expression
equs4  |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ( x  =  y  /\  ph )
)

Proof of Theorem equs4
StepHypRef Expression
1 ax6e 2250 . 2  |-  E. x  x  =  y
2 exintr 1819 . 2  |-  ( A. x ( x  =  y  ->  ph )  -> 
( E. x  x  =  y  ->  E. x
( x  =  y  /\  ph ) ) )
31, 2mpi 20 1  |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ( x  =  y  /\  ph )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  equsex  2292  equs45f  2350  equs5  2351  sb2  2352  bj-sbsb  32824
  Copyright terms: Public domain W3C validator