Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vexw Structured version   Visualization version   Unicode version

Theorem bj-vexw 32855
Description: If  ph is a theorem, then any set belongs to the class  { x  | 
ph }. Therefore,  { x  | 
ph } is "a" universal class.

This is the closest one can get to defining a universal class, or proving vex 3203, without using ax-ext 2602. Note that this theorem has no dv condition and does not use df-clel 2618 nor df-cleq 2615 either: only first-order logic and df-clab 2609.

Without ax-ext 2602, one cannot define "the" universal class, since one could not prove for instance the justification theorem  { x  | T.  }  =  {
y  | T.  } (see vjust 3201). Indeed, in order to prove any equality of classes, one needs df-cleq 2615, which has ax-ext 2602 as a hypothesis. Therefore, the classes  { x  | T.  },  { y  |  ( ph  ->  ph ) },  { z  |  ( A. t t  =  t  ->  A. t
t  =  t ) } and countless others are all universal classes whose equality one cannot prove without ax-ext 2602. See also bj-issetw 32860.

A version with a dv condition between  x and  y and not requiring ax-13 2246 is proved as bj-vexwv 32857, while the degenerate instance is a simple consequence of abid 2610. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.) Use bj-vexwv 32857 instead when sufficient. (New usage is discouraged.)

Hypothesis
Ref Expression
bj-vexw.1  |-  ph
Assertion
Ref Expression
bj-vexw  |-  y  e. 
{ x  |  ph }

Proof of Theorem bj-vexw
StepHypRef Expression
1 bj-vexwt 32854 . 2  |-  ( A. x ph  ->  y  e.  { x  |  ph }
)
2 bj-vexw.1 . 2  |-  ph
31, 2mpg 1724 1  |-  y  e. 
{ x  |  ph }
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1990   {cab 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881  df-clab 2609
This theorem is referenced by:  bj-ralvw  32865
  Copyright terms: Public domain W3C validator