![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abid | Structured version Visualization version Unicode version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
abid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2609 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sbid 2114 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitri 264 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-sb 1881 df-clab 2609 |
This theorem is referenced by: abeq2 2732 abeq2d 2734 abbi 2737 abid2f 2791 abeq2f 2792 elabgt 3347 elabgf 3348 ralab2 3371 rexab2 3373 ss2ab 3670 ab0 3951 abn0 3954 sbccsb 4004 sbccsb2 4005 tpid3gOLD 4306 eluniab 4447 elintab 4487 iunab 4566 iinab 4581 zfrep4 4779 sniota 5878 opabiota 6261 eusvobj2 6643 eloprabga 6747 finds2 7094 wfrlem12 7426 en3lplem2 8512 scottexs 8750 scott0s 8751 cp 8754 cardprclem 8805 cfflb 9081 fin23lem29 9163 axdc3lem2 9273 4sqlem12 15660 xkococn 21463 ptcmplem4 21859 ofpreima 29465 qqhval2 30026 esum2dlem 30154 sigaclcu2 30183 bnj1143 30861 bnj1366 30900 bnj906 31000 bnj1256 31083 bnj1259 31084 bnj1311 31092 mclsax 31466 ellines 32259 bj-abeq2 32773 bj-csbsnlem 32898 topdifinffinlem 33195 finxpreclem6 33233 finxpnom 33238 setindtrs 37592 rababg 37879 compab 38645 tpid3gVD 39077 en3lplem2VD 39079 iunmapsn 39409 ssfiunibd 39523 setrec2lem2 42441 |
Copyright terms: Public domain | W3C validator |