Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vexwt Structured version   Visualization version   Unicode version

Theorem bj-vexwt 32854
Description: Closed form of bj-vexw 32855. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) Use bj-vexwvt 32856 instead when sufficient. (New usage is discouraged.)
Assertion
Ref Expression
bj-vexwt  |-  ( A. x ph  ->  y  e.  { x  |  ph }
)

Proof of Theorem bj-vexwt
StepHypRef Expression
1 stdpc4 2353 . 2  |-  ( A. x ph  ->  [ y  /  x ] ph )
2 df-clab 2609 . 2  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
31, 2sylibr 224 1  |-  ( A. x ph  ->  y  e.  { x  |  ph }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   [wsb 1880    e. wcel 1990   {cab 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881  df-clab 2609
This theorem is referenced by:  bj-vexw  32855
  Copyright terms: Public domain W3C validator