Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1146 Structured version   Visualization version   Unicode version

Theorem bnj1146 30862
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1146.1  |-  ( y  e.  A  ->  A. x  y  e.  A )
Assertion
Ref Expression
bnj1146  |-  U_ x  e.  A  B  C_  B
Distinct variable groups:    y, A    x, B, y
Allowed substitution hint:    A( x)

Proof of Theorem bnj1146
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . 6  |-  F/ y ( x  e.  A  /\  w  e.  B
)
2 bnj1146.1 . . . . . . . 8  |-  ( y  e.  A  ->  A. x  y  e.  A )
32nf5i 2024 . . . . . . 7  |-  F/ x  y  e.  A
4 nfv 1843 . . . . . . 7  |-  F/ x  w  e.  B
53, 4nfan 1828 . . . . . 6  |-  F/ x
( y  e.  A  /\  w  e.  B
)
6 eleq1 2689 . . . . . . 7  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
76anbi1d 741 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  A  /\  w  e.  B
)  <->  ( y  e.  A  /\  w  e.  B ) ) )
81, 5, 7cbvex 2272 . . . . 5  |-  ( E. x ( x  e.  A  /\  w  e.  B )  <->  E. y
( y  e.  A  /\  w  e.  B
) )
9 df-rex 2918 . . . . 5  |-  ( E. x  e.  A  w  e.  B  <->  E. x
( x  e.  A  /\  w  e.  B
) )
10 df-rex 2918 . . . . 5  |-  ( E. y  e.  A  w  e.  B  <->  E. y
( y  e.  A  /\  w  e.  B
) )
118, 9, 103bitr4i 292 . . . 4  |-  ( E. x  e.  A  w  e.  B  <->  E. y  e.  A  w  e.  B )
1211abbii 2739 . . 3  |-  { w  |  E. x  e.  A  w  e.  B }  =  { w  |  E. y  e.  A  w  e.  B }
13 df-iun 4522 . . 3  |-  U_ x  e.  A  B  =  { w  |  E. x  e.  A  w  e.  B }
14 df-iun 4522 . . 3  |-  U_ y  e.  A  B  =  { w  |  E. y  e.  A  w  e.  B }
1512, 13, 143eqtr4i 2654 . 2  |-  U_ x  e.  A  B  =  U_ y  e.  A  B
16 bnj1143 30861 . 2  |-  U_ y  e.  A  B  C_  B
1715, 16eqsstri 3635 1  |-  U_ x  e.  A  B  C_  B
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913    C_ wss 3574   U_ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iun 4522
This theorem is referenced by:  bnj1145  31061
  Copyright terms: Public domain W3C validator