Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj89 Structured version   Visualization version   Unicode version

Theorem bnj89 30787
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj89.1  |-  Z  e. 
_V
Assertion
Ref Expression
bnj89  |-  ( [. Z  /  y ]. E! x ph  <->  E! x [. Z  /  y ]. ph )
Distinct variable groups:    x, Z    x, y
Allowed substitution hints:    ph( x, y)    Z( y)

Proof of Theorem bnj89
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbcex2 3486 . . 3  |-  ( [. Z  /  y ]. E. w A. x ( ph  <->  x  =  w )  <->  E. w [. Z  /  y ]. A. x ( ph  <->  x  =  w ) )
2 sbcal 3485 . . . 4  |-  ( [. Z  /  y ]. A. x ( ph  <->  x  =  w )  <->  A. x [. Z  /  y ]. ( ph  <->  x  =  w ) )
32exbii 1774 . . 3  |-  ( E. w [. Z  / 
y ]. A. x (
ph 
<->  x  =  w )  <->  E. w A. x [. Z  /  y ]. ( ph 
<->  x  =  w ) )
4 bnj89.1 . . . . . . 7  |-  Z  e. 
_V
5 sbcbig 3480 . . . . . . 7  |-  ( Z  e.  _V  ->  ( [. Z  /  y ]. ( ph  <->  x  =  w )  <->  ( [. Z  /  y ]. ph  <->  [. Z  / 
y ]. x  =  w ) ) )
64, 5ax-mp 5 . . . . . 6  |-  ( [. Z  /  y ]. ( ph 
<->  x  =  w )  <-> 
( [. Z  /  y ]. ph  <->  [. Z  /  y ]. x  =  w
) )
7 sbcg 3503 . . . . . . . 8  |-  ( Z  e.  _V  ->  ( [. Z  /  y ]. x  =  w  <->  x  =  w ) )
84, 7ax-mp 5 . . . . . . 7  |-  ( [. Z  /  y ]. x  =  w  <->  x  =  w
)
98bibi2i 327 . . . . . 6  |-  ( (
[. Z  /  y ]. ph  <->  [. Z  /  y ]. x  =  w
)  <->  ( [. Z  /  y ]. ph  <->  x  =  w ) )
106, 9bitri 264 . . . . 5  |-  ( [. Z  /  y ]. ( ph 
<->  x  =  w )  <-> 
( [. Z  /  y ]. ph  <->  x  =  w
) )
1110albii 1747 . . . 4  |-  ( A. x [. Z  /  y ]. ( ph  <->  x  =  w )  <->  A. x
( [. Z  /  y ]. ph  <->  x  =  w
) )
1211exbii 1774 . . 3  |-  ( E. w A. x [. Z  /  y ]. ( ph 
<->  x  =  w )  <->  E. w A. x (
[. Z  /  y ]. ph  <->  x  =  w
) )
131, 3, 123bitri 286 . 2  |-  ( [. Z  /  y ]. E. w A. x ( ph  <->  x  =  w )  <->  E. w A. x ( [. Z  /  y ]. ph  <->  x  =  w ) )
14 df-eu 2474 . . 3  |-  ( E! x ph  <->  E. w A. x ( ph  <->  x  =  w ) )
1514sbcbii 3491 . 2  |-  ( [. Z  /  y ]. E! x ph  <->  [. Z  /  y ]. E. w A. x
( ph  <->  x  =  w
) )
16 df-eu 2474 . 2  |-  ( E! x [. Z  / 
y ]. ph  <->  E. w A. x ( [. Z  /  y ]. ph  <->  x  =  w ) )
1713, 15, 163bitr4i 292 1  |-  ( [. Z  /  y ]. E! x ph  <->  E! x [. Z  /  y ]. ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   A.wal 1481   E.wex 1704    e. wcel 1990   E!weu 2470   _Vcvv 3200   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  bnj130  30944  bnj207  30951
  Copyright terms: Public domain W3C validator