| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj919 | Structured version Visualization version Unicode version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj919.1 |
|
| bnj919.2 |
|
| bnj919.3 |
|
| bnj919.4 |
|
| bnj919.5 |
|
| Ref | Expression |
|---|---|
| bnj919 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj919.4 |
. 2
| |
| 2 | bnj919.1 |
. . 3
| |
| 3 | 2 | sbcbii 3491 |
. 2
|
| 4 | bnj919.5 |
. . 3
| |
| 5 | df-bnj17 30753 |
. . . . 5
| |
| 6 | nfv 1843 |
. . . . . . 7
| |
| 7 | nfv 1843 |
. . . . . . 7
| |
| 8 | bnj919.2 |
. . . . . . . 8
| |
| 9 | nfsbc1v 3455 |
. . . . . . . 8
| |
| 10 | 8, 9 | nfxfr 1779 |
. . . . . . 7
|
| 11 | 6, 7, 10 | nf3an 1831 |
. . . . . 6
|
| 12 | bnj919.3 |
. . . . . . 7
| |
| 13 | nfsbc1v 3455 |
. . . . . . 7
| |
| 14 | 12, 13 | nfxfr 1779 |
. . . . . 6
|
| 15 | 11, 14 | nfan 1828 |
. . . . 5
|
| 16 | 5, 15 | nfxfr 1779 |
. . . 4
|
| 17 | eleq1 2689 |
. . . . . 6
| |
| 18 | fneq2 5980 |
. . . . . . 7
| |
| 19 | sbceq1a 3446 |
. . . . . . . 8
| |
| 20 | 19, 8 | syl6bbr 278 |
. . . . . . 7
|
| 21 | sbceq1a 3446 |
. . . . . . . 8
| |
| 22 | 21, 12 | syl6bbr 278 |
. . . . . . 7
|
| 23 | 18, 20, 22 | 3anbi123d 1399 |
. . . . . 6
|
| 24 | 17, 23 | anbi12d 747 |
. . . . 5
|
| 25 | bnj252 30769 |
. . . . 5
| |
| 26 | bnj252 30769 |
. . . . 5
| |
| 27 | 24, 25, 26 | 3bitr4g 303 |
. . . 4
|
| 28 | 16, 27 | sbciegf 3467 |
. . 3
|
| 29 | 4, 28 | ax-mp 5 |
. 2
|
| 30 | 1, 3, 29 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-fn 5891 df-bnj17 30753 |
| This theorem is referenced by: bnj910 31018 bnj999 31027 bnj907 31035 |
| Copyright terms: Public domain | W3C validator |