Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj910 Structured version   Visualization version   Unicode version

Theorem bnj910 31018
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj910.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj910.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj910.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj910.4  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj910.5  |-  ( ps'  <->  [. p  /  n ]. ps )
bnj910.6  |-  ( ch'  <->  [. p  /  n ]. ch )
bnj910.7  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj910.8  |-  ( ps"  <->  [. G  / 
f ]. ps' )
bnj910.9  |-  ( ch"  <->  [. G  / 
f ]. ch' )
bnj910.10  |-  D  =  ( om  \  { (/)
} )
bnj910.11  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj910.12  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj910.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj910.14  |-  ( ta  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
bnj910.15  |-  ( si  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
Assertion
Ref Expression
bnj910  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ch" )
Distinct variable groups:    A, f,
i, m, n, y    D, f, i, n    i, G    R, f, i, m, n, y    f, X, i, n    f, p, i, n    ph, i
Allowed substitution hints:    ph( y, f, m, n, p)    ps( y, f, i, m, n, p)    ch( y, f, i, m, n, p)    ta( y, f, i, m, n, p)    si( y, f, i, m, n, p)    A( p)    B( y, f, i, m, n, p)    C( y, f, i, m, n, p)    D( y, m, p)    R( p)    G( y, f, m, n, p)    X( y, m, p)    ph'( y, f, i, m, n, p)    ps'( y, f, i, m, n, p)    ch'( y, f, i, m, n, p)    ph"( y, f, i, m, n, p)   
ps"( y, f, i, m, n, p)    ch"( y, f, i, m, n, p)

Proof of Theorem bnj910
StepHypRef Expression
1 bnj910.3 . . . 4  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
2 bnj910.10 . . . 4  |-  D  =  ( om  \  { (/)
} )
31, 2bnj970 31017 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  p  e.  D )
4 bnj910.1 . . . . 5  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
5 bnj910.2 . . . . 5  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
6 bnj910.12 . . . . 5  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
7 bnj910.14 . . . . 5  |-  ( ta  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
8 bnj910.15 . . . . 5  |-  ( si  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
94, 5, 1, 2, 6, 7, 8bnj969 31016 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  C  e.  _V )
10 simpr3 1069 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  p  =  suc  n )
111bnj1235 30875 . . . . . 6  |-  ( ch 
->  f  Fn  n
)
12113ad2ant1 1082 . . . . 5  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  -> 
f  Fn  n )
1312adantl 482 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
f  Fn  n )
14 bnj910.13 . . . . . 6  |-  G  =  ( f  u.  { <. n ,  C >. } )
1514bnj941 30843 . . . . 5  |-  ( C  e.  _V  ->  (
( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p ) )
16153impib 1262 . . . 4  |-  ( ( C  e.  _V  /\  p  =  suc  n  /\  f  Fn  n )  ->  G  Fn  p )
179, 10, 13, 16syl3anc 1326 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  G  Fn  p )
18 bnj910.4 . . . 4  |-  ( ph'  <->  [. p  /  n ]. ph )
19 bnj910.7 . . . 4  |-  ( ph"  <->  [. G  / 
f ]. ph' )
204, 5, 1, 18, 19, 2, 6, 14, 7, 8bnj944 31008 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ph" )
21 bnj910.5 . . . 4  |-  ( ps'  <->  [. p  /  n ]. ps )
22 bnj910.8 . . . 4  |-  ( ps"  <->  [. G  / 
f ]. ps' )
235, 1, 2, 6, 14, 9bnj967 31015 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
241, 2, 6, 14, 9, 17bnj966 31014 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
255, 1, 21, 22, 6, 14, 23, 24bnj964 31013 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ps" )
263, 17, 20, 25bnj951 30846 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( p  e.  D  /\  G  Fn  p  /\  ph"  /\  ps" ) )
27 bnj910.6 . . . 4  |-  ( ch'  <->  [. p  /  n ]. ch )
28 vex 3203 . . . 4  |-  p  e. 
_V
291, 18, 21, 27, 28bnj919 30837 . . 3  |-  ( ch'  <->  (
p  e.  D  /\  f  Fn  p  /\  ph' 
/\  ps' ) )
30 bnj910.9 . . 3  |-  ( ch"  <->  [. G  / 
f ]. ch' )
3114bnj918 30836 . . 3  |-  G  e. 
_V
3229, 19, 22, 30, 31bnj976 30848 . 2  |-  ( ch"  <->  ( p  e.  D  /\  G  Fn  p  /\  ph"  /\  ps" ) )
3326, 32sylibr 224 1  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ch" )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200   [.wsbc 3435    \ cdif 3571    u. cun 3572   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj998  31026
  Copyright terms: Public domain W3C validator