Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj919 Structured version   Visualization version   GIF version

Theorem bnj919 30837
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj919.1 (𝜒 ↔ (𝑛𝐷𝐹 Fn 𝑛𝜑𝜓))
bnj919.2 (𝜑′[𝑃 / 𝑛]𝜑)
bnj919.3 (𝜓′[𝑃 / 𝑛]𝜓)
bnj919.4 (𝜒′[𝑃 / 𝑛]𝜒)
bnj919.5 𝑃 ∈ V
Assertion
Ref Expression
bnj919 (𝜒′ ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′))
Distinct variable groups:   𝐷,𝑛   𝑛,𝐹   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝜓(𝑛)   𝜒(𝑛)   𝜑′(𝑛)   𝜓′(𝑛)   𝜒′(𝑛)

Proof of Theorem bnj919
StepHypRef Expression
1 bnj919.4 . 2 (𝜒′[𝑃 / 𝑛]𝜒)
2 bnj919.1 . . 3 (𝜒 ↔ (𝑛𝐷𝐹 Fn 𝑛𝜑𝜓))
32sbcbii 3491 . 2 ([𝑃 / 𝑛]𝜒[𝑃 / 𝑛](𝑛𝐷𝐹 Fn 𝑛𝜑𝜓))
4 bnj919.5 . . 3 𝑃 ∈ V
5 df-bnj17 30753 . . . . 5 ((𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′) ↔ ((𝑃𝐷𝐹 Fn 𝑃𝜑′) ∧ 𝜓′))
6 nfv 1843 . . . . . . 7 𝑛 𝑃𝐷
7 nfv 1843 . . . . . . 7 𝑛 𝐹 Fn 𝑃
8 bnj919.2 . . . . . . . 8 (𝜑′[𝑃 / 𝑛]𝜑)
9 nfsbc1v 3455 . . . . . . . 8 𝑛[𝑃 / 𝑛]𝜑
108, 9nfxfr 1779 . . . . . . 7 𝑛𝜑′
116, 7, 10nf3an 1831 . . . . . 6 𝑛(𝑃𝐷𝐹 Fn 𝑃𝜑′)
12 bnj919.3 . . . . . . 7 (𝜓′[𝑃 / 𝑛]𝜓)
13 nfsbc1v 3455 . . . . . . 7 𝑛[𝑃 / 𝑛]𝜓
1412, 13nfxfr 1779 . . . . . 6 𝑛𝜓′
1511, 14nfan 1828 . . . . 5 𝑛((𝑃𝐷𝐹 Fn 𝑃𝜑′) ∧ 𝜓′)
165, 15nfxfr 1779 . . . 4 𝑛(𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′)
17 eleq1 2689 . . . . . 6 (𝑛 = 𝑃 → (𝑛𝐷𝑃𝐷))
18 fneq2 5980 . . . . . . 7 (𝑛 = 𝑃 → (𝐹 Fn 𝑛𝐹 Fn 𝑃))
19 sbceq1a 3446 . . . . . . . 8 (𝑛 = 𝑃 → (𝜑[𝑃 / 𝑛]𝜑))
2019, 8syl6bbr 278 . . . . . . 7 (𝑛 = 𝑃 → (𝜑𝜑′))
21 sbceq1a 3446 . . . . . . . 8 (𝑛 = 𝑃 → (𝜓[𝑃 / 𝑛]𝜓))
2221, 12syl6bbr 278 . . . . . . 7 (𝑛 = 𝑃 → (𝜓𝜓′))
2318, 20, 223anbi123d 1399 . . . . . 6 (𝑛 = 𝑃 → ((𝐹 Fn 𝑛𝜑𝜓) ↔ (𝐹 Fn 𝑃𝜑′𝜓′)))
2417, 23anbi12d 747 . . . . 5 (𝑛 = 𝑃 → ((𝑛𝐷 ∧ (𝐹 Fn 𝑛𝜑𝜓)) ↔ (𝑃𝐷 ∧ (𝐹 Fn 𝑃𝜑′𝜓′))))
25 bnj252 30769 . . . . 5 ((𝑛𝐷𝐹 Fn 𝑛𝜑𝜓) ↔ (𝑛𝐷 ∧ (𝐹 Fn 𝑛𝜑𝜓)))
26 bnj252 30769 . . . . 5 ((𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′) ↔ (𝑃𝐷 ∧ (𝐹 Fn 𝑃𝜑′𝜓′)))
2724, 25, 263bitr4g 303 . . . 4 (𝑛 = 𝑃 → ((𝑛𝐷𝐹 Fn 𝑛𝜑𝜓) ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′)))
2816, 27sbciegf 3467 . . 3 (𝑃 ∈ V → ([𝑃 / 𝑛](𝑛𝐷𝐹 Fn 𝑛𝜑𝜓) ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′)))
294, 28ax-mp 5 . 2 ([𝑃 / 𝑛](𝑛𝐷𝐹 Fn 𝑛𝜑𝜓) ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′))
301, 3, 293bitri 286 1 (𝜒′ ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  [wsbc 3435   Fn wfn 5883  w-bnj17 30752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-fn 5891  df-bnj17 30753
This theorem is referenced by:  bnj910  31018  bnj999  31027  bnj907  31035
  Copyright terms: Public domain W3C validator