Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj984 Structured version   Visualization version   Unicode version

Theorem bnj984 31022
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj984.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj984.11  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
Assertion
Ref Expression
bnj984  |-  ( G  e.  A  ->  ( G  e.  B  <->  [. G  / 
f ]. E. n ch ) )

Proof of Theorem bnj984
StepHypRef Expression
1 sbc8g 3443 . . 3  |-  ( G  e.  A  ->  ( [. G  /  f ]. E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps )  <->  G  e.  { f  |  E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps ) } ) )
2 bnj984.11 . . . 4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
32eleq2i 2693 . . 3  |-  ( G  e.  B  <->  G  e.  { f  |  E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps ) } )
41, 3syl6rbbr 279 . 2  |-  ( G  e.  A  ->  ( G  e.  B  <->  [. G  / 
f ]. E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps ) ) )
5 df-rex 2918 . . . 4  |-  ( E. n  e.  D  ( f  Fn  n  /\  ph 
/\  ps )  <->  E. n
( n  e.  D  /\  ( f  Fn  n  /\  ph  /\  ps )
) )
6 bnj984.3 . . . . 5  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
7 bnj252 30769 . . . . 5  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  <->  ( n  e.  D  /\  (
f  Fn  n  /\  ph 
/\  ps ) ) )
86, 7bitri 264 . . . 4  |-  ( ch  <->  ( n  e.  D  /\  ( f  Fn  n  /\  ph  /\  ps )
) )
95, 8bnj133 30793 . . 3  |-  ( E. n  e.  D  ( f  Fn  n  /\  ph 
/\  ps )  <->  E. n ch )
109sbcbii 3491 . 2  |-  ( [. G  /  f ]. E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps )  <->  [. G  / 
f ]. E. n ch )
114, 10syl6bb 276 1  |-  ( G  e.  A  ->  ( G  e.  B  <->  [. G  / 
f ]. E. n ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   [.wsbc 3435    Fn wfn 5883    /\ w-bnj17 30752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rex 2918  df-v 3202  df-sbc 3436  df-bnj17 30753
This theorem is referenced by:  bnj985  31023
  Copyright terms: Public domain W3C validator