| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj983 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj983.1 |
|
| bnj983.2 |
|
| bnj983.3 |
|
| bnj983.4 |
|
| bnj983.5 |
|
| Ref | Expression |
|---|---|
| bnj983 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj983.1 |
. . . . . . . 8
| |
| 2 | bnj983.2 |
. . . . . . . 8
| |
| 3 | bnj983.3 |
. . . . . . . 8
| |
| 4 | bnj983.4 |
. . . . . . . 8
| |
| 5 | 1, 2, 3, 4 | bnj882 30996 |
. . . . . . 7
|
| 6 | 5 | eleq2i 2693 |
. . . . . 6
|
| 7 | eliun 4524 |
. . . . . . 7
| |
| 8 | eliun 4524 |
. . . . . . . 8
| |
| 9 | 8 | rexbii 3041 |
. . . . . . 7
|
| 10 | 7, 9 | bitri 264 |
. . . . . 6
|
| 11 | df-rex 2918 |
. . . . . . 7
| |
| 12 | 4 | abeq2i 2735 |
. . . . . . . . 9
|
| 13 | 12 | anbi1i 731 |
. . . . . . . 8
|
| 14 | 13 | exbii 1774 |
. . . . . . 7
|
| 15 | 11, 14 | bitri 264 |
. . . . . 6
|
| 16 | 6, 10, 15 | 3bitri 286 |
. . . . 5
|
| 17 | bnj983.5 |
. . . . . . . . 9
| |
| 18 | bnj252 30769 |
. . . . . . . . 9
| |
| 19 | 17, 18 | bitri 264 |
. . . . . . . 8
|
| 20 | 19 | exbii 1774 |
. . . . . . 7
|
| 21 | 20 | anbi1i 731 |
. . . . . 6
|
| 22 | df-rex 2918 |
. . . . . . 7
| |
| 23 | df-rex 2918 |
. . . . . . 7
| |
| 24 | 22, 23 | anbi12i 733 |
. . . . . 6
|
| 25 | 21, 24 | bitr4i 267 |
. . . . 5
|
| 26 | 16, 25 | bnj133 30793 |
. . . 4
|
| 27 | 19.41v 1914 |
. . . 4
| |
| 28 | 26, 27 | bnj133 30793 |
. . 3
|
| 29 | 2 | bnj1095 30852 |
. . . . . . 7
|
| 30 | 29, 17 | bnj1096 30853 |
. . . . . 6
|
| 31 | 30 | nf5i 2024 |
. . . . 5
|
| 32 | 31 | 19.42 2105 |
. . . 4
|
| 33 | 32 | 2exbii 1775 |
. . 3
|
| 34 | 28, 33 | bitr4i 267 |
. 2
|
| 35 | 3anass 1042 |
. . 3
| |
| 36 | 35 | 3exbii 1776 |
. 2
|
| 37 | fndm 5990 |
. . . . . . . 8
| |
| 38 | 17, 37 | bnj770 30833 |
. . . . . . 7
|
| 39 | eleq2 2690 |
. . . . . . . 8
| |
| 40 | 39 | 3anbi2d 1404 |
. . . . . . 7
|
| 41 | 38, 40 | syl 17 |
. . . . . 6
|
| 42 | 41 | 3ad2ant1 1082 |
. . . . 5
|
| 43 | 42 | ibi 256 |
. . . 4
|
| 44 | 41 | 3ad2ant1 1082 |
. . . . 5
|
| 45 | 44 | ibir 257 |
. . . 4
|
| 46 | 43, 45 | impbii 199 |
. . 3
|
| 47 | 46 | 3exbii 1776 |
. 2
|
| 48 | 34, 36, 47 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-iun 4522 df-fn 5891 df-bnj17 30753 df-bnj18 30761 |
| This theorem is referenced by: bnj1033 31037 |
| Copyright terms: Public domain | W3C validator |