| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvex2v | Structured version Visualization version Unicode version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.) Remove dependency on ax-10 2019. (Revised by Wolf Lammen, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| cbval2v.1 |
|
| Ref | Expression |
|---|---|
| cbvex2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval2v.1 |
. . 3
| |
| 2 | 1 | cbvexdva 2283 |
. 2
|
| 3 | 2 | cbvexv 2275 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: cbvex4v 2289 funop1 41302 uspgrsprf1 41755 |
| Copyright terms: Public domain | W3C validator |