Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funop1 Structured version   Visualization version   Unicode version

Theorem funop1 41302
Description: A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
funop1  |-  ( E. x E. y  F  =  <. x ,  y
>.  ->  ( Fun  F  <->  E. x E. y  F  =  { <. x ,  y >. } ) )
Distinct variable group:    x, F, y

Proof of Theorem funop1
Dummy variables  a 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq12 4404 . . . 4  |-  ( ( x  =  v  /\  y  =  w )  -> 
<. x ,  y >.  =  <. v ,  w >. )
21eqeq2d 2632 . . 3  |-  ( ( x  =  v  /\  y  =  w )  ->  ( F  =  <. x ,  y >.  <->  F  =  <. v ,  w >. ) )
32cbvex2v 2287 . 2  |-  ( E. x E. y  F  =  <. x ,  y
>. 
<->  E. v E. w  F  =  <. v ,  w >. )
4 vex 3203 . . . . . . 7  |-  v  e. 
_V
5 vex 3203 . . . . . . 7  |-  w  e. 
_V
64, 5funopsn 6413 . . . . . 6  |-  ( ( Fun  F  /\  F  =  <. v ,  w >. )  ->  E. a
( v  =  {
a }  /\  F  =  { <. a ,  a
>. } ) )
7 vex 3203 . . . . . . . . 9  |-  a  e. 
_V
8 opeq12 4404 . . . . . . . . . . 11  |-  ( ( x  =  a  /\  y  =  a )  -> 
<. x ,  y >.  =  <. a ,  a
>. )
98sneqd 4189 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  a )  ->  { <. x ,  y
>. }  =  { <. a ,  a >. } )
109eqeq2d 2632 . . . . . . . . 9  |-  ( ( x  =  a  /\  y  =  a )  ->  ( F  =  { <. x ,  y >. } 
<->  F  =  { <. a ,  a >. } ) )
117, 7, 10spc2ev 3301 . . . . . . . 8  |-  ( F  =  { <. a ,  a >. }  ->  E. x E. y  F  =  { <. x ,  y >. } )
1211adantl 482 . . . . . . 7  |-  ( ( v  =  { a }  /\  F  =  { <. a ,  a
>. } )  ->  E. x E. y  F  =  { <. x ,  y
>. } )
1312exlimiv 1858 . . . . . 6  |-  ( E. a ( v  =  { a }  /\  F  =  { <. a ,  a >. } )  ->  E. x E. y  F  =  { <. x ,  y >. } )
146, 13syl 17 . . . . 5  |-  ( ( Fun  F  /\  F  =  <. v ,  w >. )  ->  E. x E. y  F  =  { <. x ,  y
>. } )
1514expcom 451 . . . 4  |-  ( F  =  <. v ,  w >.  ->  ( Fun  F  ->  E. x E. y  F  =  { <. x ,  y >. } ) )
16 vex 3203 . . . . . . 7  |-  x  e. 
_V
17 vex 3203 . . . . . . 7  |-  y  e. 
_V
1816, 17funsn 5939 . . . . . 6  |-  Fun  { <. x ,  y >. }
19 funeq 5908 . . . . . 6  |-  ( F  =  { <. x ,  y >. }  ->  ( Fun  F  <->  Fun  { <. x ,  y >. } ) )
2018, 19mpbiri 248 . . . . 5  |-  ( F  =  { <. x ,  y >. }  ->  Fun 
F )
2120exlimivv 1860 . . . 4  |-  ( E. x E. y  F  =  { <. x ,  y >. }  ->  Fun 
F )
2215, 21impbid1 215 . . 3  |-  ( F  =  <. v ,  w >.  ->  ( Fun  F  <->  E. x E. y  F  =  { <. x ,  y >. } ) )
2322exlimivv 1860 . 2  |-  ( E. v E. w  F  =  <. v ,  w >.  ->  ( Fun  F  <->  E. x E. y  F  =  { <. x ,  y >. } ) )
243, 23sylbi 207 1  |-  ( E. x E. y  F  =  <. x ,  y
>.  ->  ( Fun  F  <->  E. x E. y  F  =  { <. x ,  y >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704   {csn 4177   <.cop 4183   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator