Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf1 Structured version   Visualization version   Unicode version

Theorem uspgrsprf1 41755
Description: The mapping  F is a one-to-one function from the "simple pseudographs" with a fixed set of vertices  V into the subsets of the set of pairs over the set  V. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p  |-  P  =  ~P (Pairs `  V
)
uspgrsprf.g  |-  G  =  { <. v ,  e
>.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) }
uspgrsprf.f  |-  F  =  ( g  e.  G  |->  ( 2nd `  g
) )
Assertion
Ref Expression
uspgrsprf1  |-  F : G -1-1-> P
Distinct variable groups:    P, e,
q, v    e, V, q, v    g, G    P, g, e, v
Allowed substitution hints:    F( v, e, g, q)    G( v, e, q)    V( g)

Proof of Theorem uspgrsprf1
Dummy variables  a 
b  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrsprf.p . . 3  |-  P  =  ~P (Pairs `  V
)
2 uspgrsprf.g . . 3  |-  G  =  { <. v ,  e
>.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) }
3 uspgrsprf.f . . 3  |-  F  =  ( g  e.  G  |->  ( 2nd `  g
) )
41, 2, 3uspgrsprf 41754 . 2  |-  F : G
--> P
51, 2, 3uspgrsprfv 41753 . . . . 5  |-  ( a  e.  G  ->  ( F `  a )  =  ( 2nd `  a
) )
61, 2, 3uspgrsprfv 41753 . . . . 5  |-  ( b  e.  G  ->  ( F `  b )  =  ( 2nd `  b
) )
75, 6eqeqan12d 2638 . . . 4  |-  ( ( a  e.  G  /\  b  e.  G )  ->  ( ( F `  a )  =  ( F `  b )  <-> 
( 2nd `  a
)  =  ( 2nd `  b ) ) )
82eleq2i 2693 . . . . . 6  |-  ( a  e.  G  <->  a  e.  {
<. v ,  e >.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) } )
9 elopab 4983 . . . . . 6  |-  ( a  e.  { <. v ,  e >.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) }  <->  E. v E. e ( a  = 
<. v ,  e >.  /\  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e ) ) ) )
10 opeq12 4404 . . . . . . . . 9  |-  ( ( v  =  w  /\  e  =  f )  -> 
<. v ,  e >.  =  <. w ,  f
>. )
1110eqeq2d 2632 . . . . . . . 8  |-  ( ( v  =  w  /\  e  =  f )  ->  ( a  =  <. v ,  e >.  <->  a  =  <. w ,  f >.
) )
12 eqeq1 2626 . . . . . . . . . 10  |-  ( v  =  w  ->  (
v  =  V  <->  w  =  V ) )
1312adantr 481 . . . . . . . . 9  |-  ( ( v  =  w  /\  e  =  f )  ->  ( v  =  V  <-> 
w  =  V ) )
14 eqeq2 2633 . . . . . . . . . . 11  |-  ( v  =  w  ->  (
(Vtx `  q )  =  v  <->  (Vtx `  q )  =  w ) )
15 eqeq2 2633 . . . . . . . . . . 11  |-  ( e  =  f  ->  (
(Edg `  q )  =  e  <->  (Edg `  q )  =  f ) )
1614, 15bi2anan9 917 . . . . . . . . . 10  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e )  <-> 
( (Vtx `  q
)  =  w  /\  (Edg `  q )  =  f ) ) )
1716rexbidv 3052 . . . . . . . . 9  |-  ( ( v  =  w  /\  e  =  f )  ->  ( E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e )  <->  E. q  e. USPGraph  ( (Vtx
`  q )  =  w  /\  (Edg `  q )  =  f ) ) )
1813, 17anbi12d 747 . . . . . . . 8  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) )  <->  ( w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  w  /\  (Edg `  q )  =  f ) ) ) )
1911, 18anbi12d 747 . . . . . . 7  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ( a  = 
<. v ,  e >.  /\  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e ) ) )  <->  ( a  =  <. w ,  f
>.  /\  ( w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  w  /\  (Edg `  q )  =  f ) ) ) ) )
2019cbvex2v 2287 . . . . . 6  |-  ( E. v E. e ( a  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  <->  E. w E. f ( a  = 
<. w ,  f >.  /\  ( w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q )  =  f ) ) ) )
218, 9, 203bitri 286 . . . . 5  |-  ( a  e.  G  <->  E. w E. f ( a  = 
<. w ,  f >.  /\  ( w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q )  =  f ) ) ) )
222eleq2i 2693 . . . . . 6  |-  ( b  e.  G  <->  b  e.  {
<. v ,  e >.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) } )
23 elopab 4983 . . . . . 6  |-  ( b  e.  { <. v ,  e >.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) }  <->  E. v E. e ( b  = 
<. v ,  e >.  /\  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e ) ) ) )
2422, 23bitri 264 . . . . 5  |-  ( b  e.  G  <->  E. v E. e ( b  = 
<. v ,  e >.  /\  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e ) ) ) )
25 eqeq2 2633 . . . . . . . . . . . . . . . 16  |-  ( w  =  V  ->  (
v  =  w  <->  v  =  V ) )
26 opeq12 4404 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  =  v  /\  f  =  e )  -> 
<. w ,  f >.  =  <. v ,  e
>. )
2726ex 450 . . . . . . . . . . . . . . . . 17  |-  ( w  =  v  ->  (
f  =  e  ->  <. w ,  f >.  =  <. v ,  e
>. ) )
2827equcoms 1947 . . . . . . . . . . . . . . . 16  |-  ( v  =  w  ->  (
f  =  e  ->  <. w ,  f >.  =  <. v ,  e
>. ) )
2925, 28syl6bir 244 . . . . . . . . . . . . . . 15  |-  ( w  =  V  ->  (
v  =  V  -> 
( f  =  e  ->  <. w ,  f
>.  =  <. v ,  e >. ) ) )
3029ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  ->  (
v  =  V  -> 
( f  =  e  ->  <. w ,  f
>.  =  <. v ,  e >. ) ) )
3130com12 32 . . . . . . . . . . . . 13  |-  ( v  =  V  ->  (
( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  ->  (
f  =  e  ->  <. w ,  f >.  =  <. v ,  e
>. ) ) )
3231ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  (
( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  ->  (
f  =  e  ->  <. w ,  f >.  =  <. v ,  e
>. ) ) )
3332imp 445 . . . . . . . . . . 11  |-  ( ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  /\  (
a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) ) )  -> 
( f  =  e  ->  <. w ,  f
>.  =  <. v ,  e >. ) )
34 vex 3203 . . . . . . . . . . . . . 14  |-  w  e. 
_V
35 vex 3203 . . . . . . . . . . . . . 14  |-  f  e. 
_V
3634, 35op2ndd 7179 . . . . . . . . . . . . 13  |-  ( a  =  <. w ,  f
>.  ->  ( 2nd `  a
)  =  f )
3736ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  /\  (
a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) ) )  -> 
( 2nd `  a
)  =  f )
38 vex 3203 . . . . . . . . . . . . . . 15  |-  v  e. 
_V
39 vex 3203 . . . . . . . . . . . . . . 15  |-  e  e. 
_V
4038, 39op2ndd 7179 . . . . . . . . . . . . . 14  |-  ( b  =  <. v ,  e
>.  ->  ( 2nd `  b
)  =  e )
4140adantr 481 . . . . . . . . . . . . 13  |-  ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  ( 2nd `  b )  =  e )
4241adantr 481 . . . . . . . . . . . 12  |-  ( ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  /\  (
a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) ) )  -> 
( 2nd `  b
)  =  e )
4337, 42eqeq12d 2637 . . . . . . . . . . 11  |-  ( ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  /\  (
a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) ) )  -> 
( ( 2nd `  a
)  =  ( 2nd `  b )  <->  f  =  e ) )
44 eqeq12 2635 . . . . . . . . . . . . . . . 16  |-  ( ( a  =  <. w ,  f >.  /\  b  =  <. v ,  e
>. )  ->  ( a  =  b  <->  <. w ,  f >.  =  <. v ,  e >. )
)
4544ex 450 . . . . . . . . . . . . . . 15  |-  ( a  =  <. w ,  f
>.  ->  ( b  = 
<. v ,  e >.  ->  ( a  =  b  <->  <. w ,  f >.  =  <. v ,  e
>. ) ) )
4645adantr 481 . . . . . . . . . . . . . 14  |-  ( ( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  ->  (
b  =  <. v ,  e >.  ->  (
a  =  b  <->  <. w ,  f >.  =  <. v ,  e >. )
) )
4746com12 32 . . . . . . . . . . . . 13  |-  ( b  =  <. v ,  e
>.  ->  ( ( a  =  <. w ,  f
>.  /\  ( w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  w  /\  (Edg `  q )  =  f ) ) )  ->  ( a  =  b  <->  <. w ,  f
>.  =  <. v ,  e >. ) ) )
4847adantr 481 . . . . . . . . . . . 12  |-  ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  (
( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  ->  (
a  =  b  <->  <. w ,  f >.  =  <. v ,  e >. )
) )
4948imp 445 . . . . . . . . . . 11  |-  ( ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  /\  (
a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) ) )  -> 
( a  =  b  <->  <. w ,  f >.  =  <. v ,  e
>. ) )
5033, 43, 493imtr4d 283 . . . . . . . . . 10  |-  ( ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  /\  (
a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) ) )  -> 
( ( 2nd `  a
)  =  ( 2nd `  b )  ->  a  =  b ) )
5150ex 450 . . . . . . . . 9  |-  ( ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  (
( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  ->  (
( 2nd `  a
)  =  ( 2nd `  b )  ->  a  =  b ) ) )
5251exlimivv 1860 . . . . . . . 8  |-  ( E. v E. e ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  (
( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  ->  (
( 2nd `  a
)  =  ( 2nd `  b )  ->  a  =  b ) ) )
5352com12 32 . . . . . . 7  |-  ( ( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  ->  ( E. v E. e ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  (
( 2nd `  a
)  =  ( 2nd `  b )  ->  a  =  b ) ) )
5453exlimivv 1860 . . . . . 6  |-  ( E. w E. f ( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  ->  ( E. v E. e ( b  =  <. v ,  e >.  /\  (
v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) )  ->  (
( 2nd `  a
)  =  ( 2nd `  b )  ->  a  =  b ) ) )
5554imp 445 . . . . 5  |-  ( ( E. w E. f
( a  =  <. w ,  f >.  /\  (
w  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  w  /\  (Edg `  q
)  =  f ) ) )  /\  E. v E. e ( b  =  <. v ,  e
>.  /\  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) ) )  ->  ( ( 2nd `  a )  =  ( 2nd `  b
)  ->  a  =  b ) )
5621, 24, 55syl2anb 496 . . . 4  |-  ( ( a  e.  G  /\  b  e.  G )  ->  ( ( 2nd `  a
)  =  ( 2nd `  b )  ->  a  =  b ) )
577, 56sylbid 230 . . 3  |-  ( ( a  e.  G  /\  b  e.  G )  ->  ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) )
5857rgen2a 2977 . 2  |-  A. a  e.  G  A. b  e.  G  ( ( F `  a )  =  ( F `  b )  ->  a  =  b )
59 dff13 6512 . 2  |-  ( F : G -1-1-> P  <->  ( F : G --> P  /\  A. a  e.  G  A. b  e.  G  (
( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) ) )
604, 58, 59mpbir2an 955 1  |-  F : G -1-1-> P
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   ~Pcpw 4158   <.cop 4183   {copab 4712    |-> cmpt 4729   -->wf 5884   -1-1->wf1 5885   ` cfv 5888   2ndc2nd 7167  Vtxcvtx 25874  Edgcedg 25939   USPGraph cuspgr 26043  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-uspgr 26045  df-spr 41728
This theorem is referenced by:  uspgrsprf1o  41757
  Copyright terms: Public domain W3C validator