| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralsv | Structured version Visualization version Unicode version | ||
| Description: Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| cbvralsv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . 3
| |
| 2 | nfs1v 2437 |
. . 3
| |
| 3 | sbequ12 2111 |
. . 3
| |
| 4 | 1, 2, 3 | cbvral 3167 |
. 2
|
| 5 | nfv 1843 |
. . . 4
| |
| 6 | 5 | nfsb 2440 |
. . 3
|
| 7 | nfv 1843 |
. . 3
| |
| 8 | sbequ 2376 |
. . 3
| |
| 9 | 6, 7, 8 | cbvral 3167 |
. 2
|
| 10 | 4, 9 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 |
| This theorem is referenced by: sbralie 3184 rspsbc 3518 ralxpf 5268 tfinds 7059 tfindes 7062 nn0min 29567 |
| Copyright terms: Public domain | W3C validator |