Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0min Structured version   Visualization version   Unicode version

Theorem nn0min 29567
Description: Extracting the minimum positive integer for which a property  ch does not hold. This uses substitutions similar to nn0ind 11472. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
nn0min.0  |-  ( n  =  0  ->  ( ps 
<->  ch ) )
nn0min.1  |-  ( n  =  m  ->  ( ps 
<->  th ) )
nn0min.2  |-  ( n  =  ( m  + 
1 )  ->  ( ps 
<->  ta ) )
nn0min.3  |-  ( ph  ->  -.  ch )
nn0min.4  |-  ( ph  ->  E. n  e.  NN  ps )
Assertion
Ref Expression
nn0min  |-  ( ph  ->  E. m  e.  NN0  ( -.  th  /\  ta ) )
Distinct variable groups:    m, n, ph    ps, m    ta, n    th, n    ch, m, n
Allowed substitution hints:    ps( n)    th( m)    ta( m)

Proof of Theorem nn0min
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0min.4 . . . . 5  |-  ( ph  ->  E. n  e.  NN  ps )
21adantr 481 . . . 4  |-  ( (
ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta ) )  ->  E. n  e.  NN  ps )
3 nfv 1843 . . . . . . . . . 10  |-  F/ m ph
4 nfra1 2941 . . . . . . . . . 10  |-  F/ m A. m  e.  NN0  ( -.  th  ->  -. 
ta )
53, 4nfan 1828 . . . . . . . . 9  |-  F/ m
( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta ) )
6 nfv 1843 . . . . . . . . 9  |-  F/ m  -.  [ k  /  n ] ps
75, 6nfim 1825 . . . . . . . 8  |-  F/ m
( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  [ k  /  n ] ps )
8 dfsbcq2 3438 . . . . . . . . . 10  |-  ( k  =  1  ->  ( [ k  /  n ] ps  <->  [. 1  /  n ]. ps ) )
98notbid 308 . . . . . . . . 9  |-  ( k  =  1  ->  ( -.  [ k  /  n ] ps  <->  -.  [. 1  /  n ]. ps )
)
109imbi2d 330 . . . . . . . 8  |-  ( k  =  1  ->  (
( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  [ k  /  n ] ps ) 
<->  ( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  [. 1  /  n ]. ps )
) )
11 nfv 1843 . . . . . . . . . . 11  |-  F/ n th
12 nn0min.1 . . . . . . . . . . 11  |-  ( n  =  m  ->  ( ps 
<->  th ) )
1311, 12sbhypf 3253 . . . . . . . . . 10  |-  ( k  =  m  ->  ( [ k  /  n ] ps  <->  th ) )
1413notbid 308 . . . . . . . . 9  |-  ( k  =  m  ->  ( -.  [ k  /  n ] ps  <->  -.  th )
)
1514imbi2d 330 . . . . . . . 8  |-  ( k  =  m  ->  (
( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  [ k  /  n ] ps ) 
<->  ( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  th )
) )
16 nfv 1843 . . . . . . . . . . 11  |-  F/ n ta
17 nn0min.2 . . . . . . . . . . 11  |-  ( n  =  ( m  + 
1 )  ->  ( ps 
<->  ta ) )
1816, 17sbhypf 3253 . . . . . . . . . 10  |-  ( k  =  ( m  + 
1 )  ->  ( [ k  /  n ] ps  <->  ta ) )
1918notbid 308 . . . . . . . . 9  |-  ( k  =  ( m  + 
1 )  ->  ( -.  [ k  /  n ] ps  <->  -.  ta )
)
2019imbi2d 330 . . . . . . . 8  |-  ( k  =  ( m  + 
1 )  ->  (
( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  [ k  /  n ] ps ) 
<->  ( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  ta )
) )
21 sbequ12r 2112 . . . . . . . . . 10  |-  ( k  =  n  ->  ( [ k  /  n ] ps  <->  ps ) )
2221notbid 308 . . . . . . . . 9  |-  ( k  =  n  ->  ( -.  [ k  /  n ] ps  <->  -.  ps )
)
2322imbi2d 330 . . . . . . . 8  |-  ( k  =  n  ->  (
( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  [ k  /  n ] ps ) 
<->  ( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  ps )
) )
24 nn0min.3 . . . . . . . . 9  |-  ( ph  ->  -.  ch )
25 0nn0 11307 . . . . . . . . . 10  |-  0  e.  NN0
2611, 12sbie 2408 . . . . . . . . . . . . . 14  |-  ( [ m  /  n ] ps 
<->  th )
27 nfv 1843 . . . . . . . . . . . . . . 15  |-  F/ n ch
28 nn0min.0 . . . . . . . . . . . . . . 15  |-  ( n  =  0  ->  ( ps 
<->  ch ) )
2927, 28sbhypf 3253 . . . . . . . . . . . . . 14  |-  ( m  =  0  ->  ( [ m  /  n ] ps  <->  ch ) )
3026, 29syl5bbr 274 . . . . . . . . . . . . 13  |-  ( m  =  0  ->  ( th 
<->  ch ) )
3130notbid 308 . . . . . . . . . . . 12  |-  ( m  =  0  ->  ( -.  th  <->  -.  ch )
)
32 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( m  =  0  ->  (
m  +  1 )  =  ( 0  +  1 ) )
33 0p1e1 11132 . . . . . . . . . . . . . . . 16  |-  ( 0  +  1 )  =  1
3432, 33syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( m  =  0  ->  (
m  +  1 )  =  1 )
35 1nn 11031 . . . . . . . . . . . . . . . 16  |-  1  e.  NN
36 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( ( m  +  1 )  =  1  ->  (
( m  +  1 )  e.  NN  <->  1  e.  NN ) )
3735, 36mpbiri 248 . . . . . . . . . . . . . . 15  |-  ( ( m  +  1 )  =  1  ->  (
m  +  1 )  e.  NN )
3817sbcieg 3468 . . . . . . . . . . . . . . 15  |-  ( ( m  +  1 )  e.  NN  ->  ( [. ( m  +  1 )  /  n ]. ps 
<->  ta ) )
3934, 37, 383syl 18 . . . . . . . . . . . . . 14  |-  ( m  =  0  ->  ( [. ( m  +  1 )  /  n ]. ps 
<->  ta ) )
4034sbceq1d 3440 . . . . . . . . . . . . . 14  |-  ( m  =  0  ->  ( [. ( m  +  1 )  /  n ]. ps 
<-> 
[. 1  /  n ]. ps ) )
4139, 40bitr3d 270 . . . . . . . . . . . . 13  |-  ( m  =  0  ->  ( ta 
<-> 
[. 1  /  n ]. ps ) )
4241notbid 308 . . . . . . . . . . . 12  |-  ( m  =  0  ->  ( -.  ta  <->  -.  [. 1  /  n ]. ps )
)
4331, 42imbi12d 334 . . . . . . . . . . 11  |-  ( m  =  0  ->  (
( -.  th  ->  -. 
ta )  <->  ( -.  ch  ->  -.  [. 1  /  n ]. ps )
) )
4443rspcv 3305 . . . . . . . . . 10  |-  ( 0  e.  NN0  ->  ( A. m  e.  NN0  ( -. 
th  ->  -.  ta )  ->  ( -.  ch  ->  -. 
[. 1  /  n ]. ps ) ) )
4525, 44ax-mp 5 . . . . . . . . 9  |-  ( A. m  e.  NN0  ( -. 
th  ->  -.  ta )  ->  ( -.  ch  ->  -. 
[. 1  /  n ]. ps ) )
4624, 45mpan9 486 . . . . . . . 8  |-  ( (
ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta ) )  ->  -.  [. 1  /  n ]. ps )
47 cbvralsv 3182 . . . . . . . . . . 11  |-  ( A. m  e.  NN0  ( -. 
th  ->  -.  ta )  <->  A. k  e.  NN0  [ k  /  m ] ( -.  th  ->  -.  ta ) )
48 nnnn0 11299 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  m  e.  NN0 )
49 sbequ12r 2112 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( [ k  /  m ] ( -.  th  ->  -.  ta )  <->  ( -.  th 
->  -.  ta ) ) )
5049rspcv 3305 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( A. k  e.  NN0  [ k  /  m ] ( -.  th  ->  -.  ta )  ->  ( -. 
th  ->  -.  ta )
) )
5148, 50syl 17 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  ( A. k  e.  NN0  [ k  /  m ]
( -.  th  ->  -. 
ta )  ->  ( -.  th  ->  -.  ta )
) )
5247, 51syl5bi 232 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( A. m  e.  NN0  ( -.  th  ->  -. 
ta )  ->  ( -.  th  ->  -.  ta )
) )
5352adantld 483 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta ) )  ->  ( -.  th  ->  -.  ta ) ) )
5453a2d 29 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  th )  ->  ( ( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta )
)  ->  -.  ta )
) )
557, 10, 15, 20, 23, 46, 54nnindf 29565 . . . . . . 7  |-  ( n  e.  NN  ->  (
( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta ) )  ->  -.  ps )
)
5655rgen 2922 . . . . . 6  |-  A. n  e.  NN  ( ( ph  /\ 
A. m  e.  NN0  ( -.  th  ->  -. 
ta ) )  ->  -.  ps )
57 r19.21v 2960 . . . . . 6  |-  ( A. n  e.  NN  (
( ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta ) )  ->  -.  ps )  <->  ( ( ph  /\  A. m  e.  NN0  ( -. 
th  ->  -.  ta )
)  ->  A. n  e.  NN  -.  ps )
)
5856, 57mpbi 220 . . . . 5  |-  ( (
ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta ) )  ->  A. n  e.  NN  -.  ps )
59 ralnex 2992 . . . . 5  |-  ( A. n  e.  NN  -.  ps 
<->  -.  E. n  e.  NN  ps )
6058, 59sylib 208 . . . 4  |-  ( (
ph  /\  A. m  e.  NN0  ( -.  th  ->  -.  ta ) )  ->  -.  E. n  e.  NN  ps )
612, 60pm2.65da 600 . . 3  |-  ( ph  ->  -.  A. m  e. 
NN0  ( -.  th  ->  -.  ta ) )
62 imnan 438 . . . 4  |-  ( ( -.  th  ->  -.  ta )  <->  -.  ( -.  th 
/\  ta ) )
6362ralbii 2980 . . 3  |-  ( A. m  e.  NN0  ( -. 
th  ->  -.  ta )  <->  A. m  e.  NN0  -.  ( -.  th  /\  ta ) )
6461, 63sylnib 318 . 2  |-  ( ph  ->  -.  A. m  e. 
NN0  -.  ( -.  th 
/\  ta ) )
65 dfrex2 2996 . 2  |-  ( E. m  e.  NN0  ( -.  th  /\  ta )  <->  -. 
A. m  e.  NN0  -.  ( -.  th  /\  ta ) )
6664, 65sylibr 224 1  |-  ( ph  ->  E. m  e.  NN0  ( -.  th  /\  ta ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   [wsb 1880    e. wcel 1990   A.wral 2912   E.wrex 2913   [.wsbc 3435  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   NN0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-n0 11293
This theorem is referenced by:  archirng  29742
  Copyright terms: Public domain W3C validator