| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sde | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) |
| Ref | Expression |
|---|---|
| cdleme31sde.c |
|
| cdleme31sde.e |
|
| cdleme31sde.x |
|
| cdleme31sde.z |
|
| Ref | Expression |
|---|---|
| cdleme31sde |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme31sde.e |
. . . . 5
| |
| 2 | 1 | csbeq2i 3993 |
. . . 4
|
| 3 | nfcvd 2765 |
. . . . 5
| |
| 4 | oveq1 6657 |
. . . . . . . . 9
| |
| 5 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 6 | 5 | oveq1d 6665 |
. . . . . . . . . 10
|
| 7 | 6 | oveq2d 6666 |
. . . . . . . . 9
|
| 8 | 4, 7 | oveq12d 6668 |
. . . . . . . 8
|
| 9 | cdleme31sde.c |
. . . . . . . 8
| |
| 10 | cdleme31sde.x |
. . . . . . . 8
| |
| 11 | 8, 9, 10 | 3eqtr4g 2681 |
. . . . . . 7
|
| 12 | oveq2 6658 |
. . . . . . . 8
| |
| 13 | 12 | oveq1d 6665 |
. . . . . . 7
|
| 14 | 11, 13 | oveq12d 6668 |
. . . . . 6
|
| 15 | 14 | oveq2d 6666 |
. . . . 5
|
| 16 | 3, 15 | csbiegf 3557 |
. . . 4
|
| 17 | 2, 16 | syl5eq 2668 |
. . 3
|
| 18 | 17 | csbeq2dv 3992 |
. 2
|
| 19 | eqid 2622 |
. . 3
| |
| 20 | cdleme31sde.z |
. . 3
| |
| 21 | 19, 20 | cdleme31se 35670 |
. 2
|
| 22 | 18, 21 | sylan9eqr 2678 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: cdlemefs44 35714 cdlemefs45ee 35718 cdleme17d2 35783 |
| Copyright terms: Public domain | W3C validator |