| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cgsex4g | Structured version Visualization version Unicode version | ||
| Description: An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.) |
| Ref | Expression |
|---|---|
| cgsex4g.1 |
|
| cgsex4g.2 |
|
| Ref | Expression |
|---|---|
| cgsex4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsex4g.2 |
. . . . 5
| |
| 2 | 1 | biimpa 501 |
. . . 4
|
| 3 | 2 | exlimivv 1860 |
. . 3
|
| 4 | 3 | exlimivv 1860 |
. 2
|
| 5 | elisset 3215 |
. . . . . . . 8
| |
| 6 | elisset 3215 |
. . . . . . . 8
| |
| 7 | 5, 6 | anim12i 590 |
. . . . . . 7
|
| 8 | eeanv 2182 |
. . . . . . 7
| |
| 9 | 7, 8 | sylibr 224 |
. . . . . 6
|
| 10 | elisset 3215 |
. . . . . . . 8
| |
| 11 | elisset 3215 |
. . . . . . . 8
| |
| 12 | 10, 11 | anim12i 590 |
. . . . . . 7
|
| 13 | eeanv 2182 |
. . . . . . 7
| |
| 14 | 12, 13 | sylibr 224 |
. . . . . 6
|
| 15 | 9, 14 | anim12i 590 |
. . . . 5
|
| 16 | ee4anv 2184 |
. . . . 5
| |
| 17 | 15, 16 | sylibr 224 |
. . . 4
|
| 18 | cgsex4g.1 |
. . . . . 6
| |
| 19 | 18 | 2eximi 1763 |
. . . . 5
|
| 20 | 19 | 2eximi 1763 |
. . . 4
|
| 21 | 17, 20 | syl 17 |
. . 3
|
| 22 | 1 | biimprcd 240 |
. . . . . 6
|
| 23 | 22 | ancld 576 |
. . . . 5
|
| 24 | 23 | 2eximdv 1848 |
. . . 4
|
| 25 | 24 | 2eximdv 1848 |
. . 3
|
| 26 | 21, 25 | syl5com 31 |
. 2
|
| 27 | 4, 26 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: copsex4g 4959 brecop 7840 |
| Copyright terms: Public domain | W3C validator |