HomeHome Metamath Proof Explorer
Theorem List (p. 33 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 3201-3300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremvjust 3201 Soundness justification theorem for df-v 3202. (Contributed by Rodolfo Medina, 27-Apr-2010.)
 |- 
 { x  |  x  =  x }  =  {
 y  |  y  =  y }
 
Definitiondf-v 3202 Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. The class  _V can be described as the "class of all sets"; vprc 4796 proves that  _V is not itself a set in ZFC. We will frequently use the expression  A  e.  _V as a short way to say " A is a set", and isset 3207 proves that this expression has the same meaning as  E. x x  =  A. The class  _V is called the "von Neumann universe", however, the letter "V" is not a tribute to the name of von Neumann. The letter "V" was used earlier by Peano in 1889 for the universe of sets, where the letter V is derived from the word "Verum". Peano's notation V was adopted by Whitehead and Russell in Principia Mathematica for the class of all sets in 1910. For a general discussion of the theory of classes, see mmset.html#class. (Contributed by NM, 26-May-1993.)
 |- 
 _V  =  { x  |  x  =  x }
 
Theoremvex 3203 All setvar variables are sets (see isset 3207). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 26-May-1993.)
 |-  x  e.  _V
 
Theoremeqvf 3204 The universe contains every set. (Contributed by BJ, 15-Jul-2021.)
 |-  F/_ x A   =>    |-  ( A  =  _V  <->  A. x  x  e.  A )
 
Theoremeqv 3205* The universe contains every set. (Contributed by NM, 11-Sep-2006.)
 |-  ( A  =  _V  <->  A. x  x  e.  A )
 
Theoremabv 3206 The class of sets verifying a property is the universal class if and only if that property is a tautology. (Contributed by BJ, 19-Mar-2021.)
 |-  ( { x  |  ph
 }  =  _V  <->  A. x ph )
 
Theoremisset 3207* Two ways to say " A is a set": A class  A is a member of the universal class  _V (see df-v 3202) if and only if the class  A exists (i.e. there exists some set  x equal to class 
A). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device " A  e.  _V " to mean " A is a set" very frequently, for example in uniex 6953. Note the when  A is not a set, it is called a proper class. In some theorems, such as uniexg 6955, in order to shorten certain proofs we use the more general antecedent  A  e.  V instead of  A  e.  _V to mean " A is a set."

Note that a constant is implicitly considered distinct from all variables. This is why  _V is not included in the distinct variable list, even though df-clel 2618 requires that the expression substituted for  B not contain  x. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

 |-  ( A  e.  _V  <->  E. x  x  =  A )
 
Theoremissetf 3208 A version of isset 3207 that does not require  x and  A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   =>    |-  ( A  e.  _V  <->  E. x  x  =  A )
 
Theoremisseti 3209* A way to say " A is a set" (inference rule). (Contributed by NM, 24-Jun-1993.)
 |-  A  e.  _V   =>    |-  E. x  x  =  A
 
Theoremissetri 3210* A way to say " A is a set" (inference rule). (Contributed by NM, 21-Jun-1993.)
 |- 
 E. x  x  =  A   =>    |-  A  e.  _V
 
Theoremeqvisset 3211 A class equal to a variable is a set. Note the absence of dv condition, contrary to isset 3207 and issetri 3210. (Contributed by BJ, 27-Apr-2019.)
 |-  ( x  =  A  ->  A  e.  _V )
 
Theoremelex 3212 If a class is a member of another class, it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( A  e.  B  ->  A  e.  _V )
 
Theoremelexi 3213 If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  B   =>    |-  A  e.  _V
 
Theoremelexd 3214 If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  A  e.  _V )
 
Theoremelisset 3215* An element of a class exists. (Contributed by NM, 1-May-1995.)
 |-  ( A  e.  V  ->  E. x  x  =  A )
 
Theoremelex2 3216* If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.)
 |-  ( A  e.  B  ->  E. x  x  e.  B )
 
Theoremelex22 3217* If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
 |-  ( ( A  e.  B  /\  A  e.  C )  ->  E. x ( x  e.  B  /\  x  e.  C ) )
 
Theoremprcnel 3218 A proper class doesn't belong to any class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by AV, 14-Nov-2020.)
 |-  ( -.  A  e.  _V 
 ->  -.  A  e.  V )
 
Theoremralv 3219 A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
 |-  ( A. x  e. 
 _V  ph  <->  A. x ph )
 
Theoremrexv 3220 An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
 |-  ( E. x  e. 
 _V  ph  <->  E. x ph )
 
Theoremreuv 3221 A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
 |-  ( E! x  e. 
 _V  ph  <->  E! x ph )
 
Theoremrmov 3222 A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( E* x  e. 
 _V  ph  <->  E* x ph )
 
Theoremrabab 3223 A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 { x  e.  _V  |  ph }  =  { x  |  ph }
 
Theoremralcom4 3224* Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( A. x  e.  A  A. y ph  <->  A. y A. x  e.  A  ph )
 
Theoremrexcom4 3225* Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
 
Theoremrexcom4a 3226* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
 |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
 
Theoremrexcom4b 3227* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
 |-  B  e.  _V   =>    |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ph )
 
Theoremceqsalt 3228* Closed theorem version of ceqsalg 3230. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremceqsralt 3229* Restricted quantifier version of ceqsalt 3228. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  /\  A  e.  B )  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremceqsalg 3230* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3231. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ( x  =  A  -> 
 ph )  <->  ps ) )
 
TheoremceqsalgALT 3231* Alternate proof of ceqsalg 3230, not using ceqsalt 3228. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ( x  =  A  -> 
 ph )  <->  ps ) )
 
Theoremceqsal 3232* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
 
Theoremceqsalv 3233* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ( x  =  A  -> 
 ph )  <->  ps )
 
Theoremceqsralv 3234* Restricted quantifier version of ceqsalv 3233. (Contributed by NM, 21-Jun-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremgencl 3235* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( th  <->  E. x ( ch 
 /\  A  =  B ) )   &    |-  ( A  =  B  ->  ( ph  <->  ps ) )   &    |-  ( ch  ->  ph )   =>    |-  ( th  ->  ps )
 
Theorem2gencl 3236* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( C  e.  S  <->  E. x  e.  R  A  =  C )   &    |-  ( D  e.  S 
 <-> 
 E. y  e.  R  B  =  D )   &    |-  ( A  =  C  ->  (
 ph 
 <->  ps ) )   &    |-  ( B  =  D  ->  ( ps  <->  ch ) )   &    |-  (
 ( x  e.  R  /\  y  e.  R )  ->  ph )   =>    |-  ( ( C  e.  S  /\  D  e.  S )  ->  ch )
 
Theorem3gencl 3237* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( D  e.  S  <->  E. x  e.  R  A  =  D )   &    |-  ( F  e.  S 
 <-> 
 E. y  e.  R  B  =  F )   &    |-  ( G  e.  S  <->  E. z  e.  R  C  =  G )   &    |-  ( A  =  D  ->  (
 ph 
 <->  ps ) )   &    |-  ( B  =  F  ->  ( ps  <->  ch ) )   &    |-  ( C  =  G  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  R  /\  y  e.  R  /\  z  e.  R )  ->  ph )   =>    |-  ( ( D  e.  S  /\  F  e.  S  /\  G  e.  S ) 
 ->  th )
 
Theoremcgsexg 3238* Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.)
 |-  ( x  =  A  ->  ch )   &    |-  ( ch  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( E. x ( ch  /\  ph )  <->  ps ) )
 
Theoremcgsex2g 3239* Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ch )   &    |-  ( ch  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( ch  /\  ph )  <->  ps ) )
 
Theoremcgsex4g 3240* An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.)
 |-  ( ( ( x  =  A  /\  y  =  B )  /\  (
 z  =  C  /\  w  =  D )
 )  ->  ch )   &    |-  ( ch  ->  ( ph  <->  ps ) )   =>    |-  ( ( ( A  e.  R  /\  B  e.  S )  /\  ( C  e.  R  /\  D  e.  S ) )  ->  ( E. x E. y E. z E. w ( ch  /\  ph )  <->  ps ) )
 
Theoremceqsex 3241* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( E. x ( x  =  A  /\  ph )  <->  ps )
 
Theoremceqsexv 3242* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ( x  =  A  /\  ph )  <->  ps )
 
Theoremceqsexv2d 3243* Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ps   =>    |-  E. x ph
 
Theoremceqsex2 3244* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
 |- 
 F/ x ps   &    |-  F/ y ch   &    |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
 
Theoremceqsex2v 3245* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
 
Theoremceqsex3v 3246* Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   =>    |-  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ph )  <->  th )
 
Theoremceqsex4v 3247* Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( z  =  C  ->  ( ch  <->  th ) )   &    |-  ( w  =  D  ->  ( th  <->  ta ) )   =>    |-  ( E. x E. y E. z E. w ( ( x  =  A  /\  y  =  B )  /\  (
 z  =  C  /\  w  =  D )  /\  ph )  <->  ta )
 
Theoremceqsex6v 3248* Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( z  =  C  ->  ( ch  <->  th ) )   &    |-  ( w  =  D  ->  ( th  <->  ta ) )   &    |-  ( v  =  E  ->  ( ta  <->  et ) )   &    |-  ( u  =  F  ->  ( et  <->  ze ) )   =>    |-  ( E. x E. y E. z E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  ze )
 
Theoremceqsex8v 3249* Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   &    |-  G  e.  _V   &    |-  H  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( z  =  C  ->  ( ch  <->  th ) )   &    |-  ( w  =  D  ->  ( th  <->  ta ) )   &    |-  ( v  =  E  ->  ( ta  <->  et ) )   &    |-  ( u  =  F  ->  ( et  <->  ze ) )   &    |-  ( t  =  G  ->  ( ze  <->  si ) )   &    |-  ( s  =  H  ->  ( si  <->  rh ) )   =>    |-  ( E. x E. y E. z E. w E. v E. u E. t E. s ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D ) )  /\  ( ( v  =  E  /\  u  =  F )  /\  (
 t  =  G  /\  s  =  H )
 )  /\  ph )  <->  rh )
 
Theoremgencbvex 3250* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   &    |-  ( A  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ( A  =  y  ->  ( ch  <->  th ) )   &    |-  ( th 
 <-> 
 E. x ( ch 
 /\  A  =  y ) )   =>    |-  ( E. x ( ch  /\  ph )  <->  E. y ( th  /\  ps ) )
 
Theoremgencbvex2 3251* Restatement of gencbvex 3250 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.)
 |-  A  e.  _V   &    |-  ( A  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ( A  =  y  ->  ( ch  <->  th ) )   &    |-  ( th  ->  E. x ( ch 
 /\  A  =  y ) )   =>    |-  ( E. x ( ch  /\  ph )  <->  E. y ( th  /\  ps ) )
 
Theoremgencbval 3252* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.)
 |-  A  e.  _V   &    |-  ( A  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ( A  =  y  ->  ( ch  <->  th ) )   &    |-  ( th 
 <-> 
 E. x ( ch 
 /\  A  =  y ) )   =>    |-  ( A. x ( ch  ->  ph )  <->  A. y ( th  ->  ps ) )
 
Theoremsbhypf 3253* Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3552. (Contributed by Raph Levien, 10-Apr-2004.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( y  =  A  ->  ( [
 y  /  x ] ph 
 <->  ps ) )
 
Theoremvtoclgft 3254 Closed theorem form of vtoclgf 3264. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by JJ, 11-Aug-2021.)
 |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  V )  ->  ps )
 
TheoremvtoclgftOLD 3255 Obsolete proof of vtoclgft 3254 as of 11-Aug-2021. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  V )  ->  ps )
 
Theoremvtocldf 3256 Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ps )   &    |-  F/ x ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  ch )
 
Theoremvtocld 3257* Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ch )
 
Theoremvtoclf 3258* Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2262. (Contributed by NM, 30-Aug-1993.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtocl 3259* Implicit substitution of a class for a setvar variable. See also vtoclALT 3260. (Contributed by NM, 30-Aug-1993.) Removed dependency on ax-10 2019. (Revised by BJ, 29-Nov-2020.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
TheoremvtoclALT 3260* Alternate proof of vtocl 3259. Shorter but requires more axioms. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtocl2 3261* Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtocl3 3262* Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  (
 ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtoclb 3263* Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  A  ->  ( ps  <->  th ) )   &    |-  ( ph 
 <->  ps )   =>    |-  ( ch  <->  th )
 
Theoremvtoclgf 3264 Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |-  ( A  e.  V  ->  ps )
 
Theoremvtoclg1f 3265* Version of vtoclgf 3264 with one non-freeness hypothesis replaced with a dv condition, thus avoiding dependency on ax-11 2034 and ax-13 2246. (Contributed by BJ, 1-May-2019.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |-  ( A  e.  V  ->  ps )
 
Theoremvtoclg 3266* Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |-  ( A  e.  V  ->  ps )
 
Theoremvtoclbg 3267* Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  ( x  =  A  ->  ( ps  <->  th ) )   &    |-  ( ph 
 <->  ps )   =>    |-  ( A  e.  V  ->  ( ch  <->  th ) )
 
Theoremvtocl2gf 3268 Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ph   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ch )
 
Theoremvtocl3gf 3269 Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ z A   &    |-  F/_ y B   &    |-  F/_ z B   &    |-  F/_ z C   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  F/ z th   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  ph   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  th )
 
Theoremvtocl2g 3270* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  ph   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ch )
 
Theoremvtoclgaf 3271* Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ( x  e.  B  ->  ph )   =>    |-  ( A  e.  B  ->  ps )
 
Theoremvtoclga 3272* Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( x  e.  B  ->  ph )   =>    |-  ( A  e.  B  ->  ps )
 
Theoremvtocl2gaf 3273* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( ( x  e.  C  /\  y  e.  D )  ->  ph )   =>    |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ch )
 
Theoremvtocl2ga 3274* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 ( x  e.  C  /\  y  e.  D )  ->  ph )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ch )
 
Theoremvtocl3gaf 3275* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ z A   &    |-  F/_ y B   &    |-  F/_ z B   &    |-  F/_ z C   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  F/ z th   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  R  /\  y  e.  S  /\  z  e.  T )  ->  ph )   =>    |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T ) 
 ->  th )
 
Theoremvtocl3ga 3276* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  D  /\  y  e.  R  /\  z  e.  S )  ->  ph )   =>    |-  ( ( A  e.  D  /\  B  e.  R  /\  C  e.  S ) 
 ->  th )
 
Theoremvtocl4g 3277* Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  rh ) )   &    |-  ( w  =  D  ->  ( rh  <->  th ) )   &    |-  ph   =>    |-  ( ( ( A  e.  Q  /\  B  e.  R )  /\  ( C  e.  S  /\  D  e.  T )
 )  ->  th )
 
Theoremvtocl4ga 3278* Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  rh ) )   &    |-  ( w  =  D  ->  ( rh  <->  th ) )   &    |-  (
 ( ( x  e.  Q  /\  y  e.  R )  /\  (
 z  e.  S  /\  w  e.  T )
 )  ->  ph )   =>    |-  ( ( ( A  e.  Q  /\  B  e.  R )  /\  ( C  e.  S  /\  D  e.  T ) )  ->  th )
 
Theoremvtocleg 3279* Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.)
 |-  ( x  =  A  -> 
 ph )   =>    |-  ( A  e.  V  -> 
 ph )
 
Theoremvtoclegft 3280* Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 3281.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |-  ( ( A  e.  B  /\  F/ x ph  /\ 
 A. x ( x  =  A  ->  ph )
 )  ->  ph )
 
Theoremvtoclef 3281* Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
 |- 
 F/ x ph   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ph )   =>    |-  ph
 
Theoremvtocle 3282* Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  ph )   =>    |-  ph
 
Theoremvtoclri 3283* Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  A. x  e.  B  ph   =>    |-  ( A  e.  B  ->  ps )
 
Theoremspcimgft 3284 A closed version of spcimgf 3286. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph  ->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
 
Theoremspcgft 3285 A closed version of spcgf 3288. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
 
Theoremspcimgf 3286 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph  ->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcimegf 3287 Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  ( ps  ->  ph ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspcgf 3288 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcegf 3289 Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspcimdv 3290* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x ps  ->  ch )
 )
 
Theoremspcdv 3291* Rule of specialization, using implicit substitution. Analogous to rspcdv 3312. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  ->  ch ) )
 
Theoremspcimedv 3292* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ch  ->  ps )
 )   =>    |-  ( ph  ->  ( ch  ->  E. x ps )
 )
 
Theoremspcgv 3293* Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcegv 3294* Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspc2egv 3295* Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ps  ->  E. x E. y ph ) )
 
Theoremspc2gv 3296* Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x A. y ph  ->  ps ) )
 
Theoremspc3egv 3297* Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps 
 ->  E. x E. y E. z ph ) )
 
Theoremspc3gv 3298* Specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. x A. y A. z ph  ->  ps ) )
 
Theoremspcv 3299* Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theoremspcev 3300* Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ps  ->  E. x ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >