| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brecop | Structured version Visualization version Unicode version | ||
| Description: Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.) |
| Ref | Expression |
|---|---|
| brecop.1 |
|
| brecop.2 |
|
| brecop.4 |
|
| brecop.5 |
|
| brecop.6 |
|
| Ref | Expression |
|---|---|
| brecop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brecop.1 |
. . . 4
| |
| 2 | brecop.4 |
. . . 4
| |
| 3 | 1, 2 | ecopqsi 7804 |
. . 3
|
| 4 | 1, 2 | ecopqsi 7804 |
. . 3
|
| 5 | df-br 4654 |
. . . . 5
| |
| 6 | brecop.5 |
. . . . . 6
| |
| 7 | 6 | eleq2i 2693 |
. . . . 5
|
| 8 | 5, 7 | bitri 264 |
. . . 4
|
| 9 | eqeq1 2626 |
. . . . . . . 8
| |
| 10 | 9 | anbi1d 741 |
. . . . . . 7
|
| 11 | 10 | anbi1d 741 |
. . . . . 6
|
| 12 | 11 | 4exbidv 1854 |
. . . . 5
|
| 13 | eqeq1 2626 |
. . . . . . . 8
| |
| 14 | 13 | anbi2d 740 |
. . . . . . 7
|
| 15 | 14 | anbi1d 741 |
. . . . . 6
|
| 16 | 15 | 4exbidv 1854 |
. . . . 5
|
| 17 | 12, 16 | opelopab2 4996 |
. . . 4
|
| 18 | 8, 17 | syl5bb 272 |
. . 3
|
| 19 | 3, 4, 18 | syl2an 494 |
. 2
|
| 20 | opeq12 4404 |
. . . . . 6
| |
| 21 | 20 | eceq1d 7783 |
. . . . 5
|
| 22 | opeq12 4404 |
. . . . . 6
| |
| 23 | 22 | eceq1d 7783 |
. . . . 5
|
| 24 | 21, 23 | anim12i 590 |
. . . 4
|
| 25 | opelxpi 5148 |
. . . . . . . 8
| |
| 26 | opelxp 5146 |
. . . . . . . . 9
| |
| 27 | brecop.2 |
. . . . . . . . . . 11
| |
| 28 | 27 | a1i 11 |
. . . . . . . . . 10
|
| 29 | id 22 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | ereldm 7790 |
. . . . . . . . 9
|
| 31 | 26, 30 | syl5bbr 274 |
. . . . . . . 8
|
| 32 | 25, 31 | syl5ibr 236 |
. . . . . . 7
|
| 33 | opelxpi 5148 |
. . . . . . . 8
| |
| 34 | opelxp 5146 |
. . . . . . . . 9
| |
| 35 | 27 | a1i 11 |
. . . . . . . . . 10
|
| 36 | id 22 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | ereldm 7790 |
. . . . . . . . 9
|
| 38 | 34, 37 | syl5bbr 274 |
. . . . . . . 8
|
| 39 | 33, 38 | syl5ibr 236 |
. . . . . . 7
|
| 40 | 32, 39 | im2anan9 880 |
. . . . . 6
|
| 41 | brecop.6 |
. . . . . . . . 9
| |
| 42 | 41 | an4s 869 |
. . . . . . . 8
|
| 43 | 42 | ex 450 |
. . . . . . 7
|
| 44 | 43 | com13 88 |
. . . . . 6
|
| 45 | 40, 44 | mpdd 43 |
. . . . 5
|
| 46 | 45 | pm5.74d 262 |
. . . 4
|
| 47 | 24, 46 | cgsex4g 3240 |
. . 3
|
| 48 | eqcom 2629 |
. . . . . . 7
| |
| 49 | eqcom 2629 |
. . . . . . 7
| |
| 50 | 48, 49 | anbi12i 733 |
. . . . . 6
|
| 51 | 50 | a1i 11 |
. . . . 5
|
| 52 | biimt 350 |
. . . . 5
| |
| 53 | 51, 52 | anbi12d 747 |
. . . 4
|
| 54 | 53 | 4exbidv 1854 |
. . 3
|
| 55 | biimt 350 |
. . 3
| |
| 56 | 47, 54, 55 | 3bitr4d 300 |
. 2
|
| 57 | 19, 56 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-er 7742 df-ec 7744 df-qs 7748 |
| This theorem is referenced by: ltsrpr 9898 |
| Copyright terms: Public domain | W3C validator |