| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clelab | Structured version Visualization version Unicode version | ||
| Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| clelab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2618 |
. 2
| |
| 2 | nfv 1843 |
. . 3
| |
| 3 | nfv 1843 |
. . . 4
| |
| 4 | nfsab1 2612 |
. . . 4
| |
| 5 | 3, 4 | nfan 1828 |
. . 3
|
| 6 | eqeq1 2626 |
. . . 4
| |
| 7 | sbequ12 2111 |
. . . . 5
| |
| 8 | df-clab 2609 |
. . . . 5
| |
| 9 | 7, 8 | syl6bbr 278 |
. . . 4
|
| 10 | 6, 9 | anbi12d 747 |
. . 3
|
| 11 | 2, 5, 10 | cbvex 2272 |
. 2
|
| 12 | 1, 11 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 |
| This theorem is referenced by: elrabi 3359 bj-csbsnlem 32898 frege55c 38212 spr0nelg 41726 |
| Copyright terms: Public domain | W3C validator |