Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-csbsnlem Structured version   Visualization version   Unicode version

Theorem bj-csbsnlem 32898
Description: Lemma for bj-csbsn 32899 (in this lemma,  x cannot occur in  A). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.)
Assertion
Ref Expression
bj-csbsnlem  |-  [_ A  /  x ]_ { x }  =  { A }
Distinct variable group:    x, A

Proof of Theorem bj-csbsnlem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 abid 2610 . . . 4  |-  ( y  e.  { y  | 
[. A  /  x ]. y  e.  { x } }  <->  [. A  /  x ]. y  e.  { x } )
2 df-sbc 3436 . . . 4  |-  ( [. A  /  x ]. y  e.  { x }  <->  A  e.  { x  |  y  e. 
{ x } }
)
3 clelab 2748 . . . . 5  |-  ( A  e.  { x  |  y  e.  { x } }  <->  E. x ( x  =  A  /\  y  e.  { x } ) )
4 velsn 4193 . . . . . . 7  |-  ( y  e.  { x }  <->  y  =  x )
54anbi2i 730 . . . . . 6  |-  ( ( x  =  A  /\  y  e.  { x } )  <->  ( x  =  A  /\  y  =  x ) )
65exbii 1774 . . . . 5  |-  ( E. x ( x  =  A  /\  y  e. 
{ x } )  <->  E. x ( x  =  A  /\  y  =  x ) )
7 eqeq2 2633 . . . . . . . 8  |-  ( x  =  A  ->  (
y  =  x  <->  y  =  A ) )
87pm5.32i 669 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  x )  <->  ( x  =  A  /\  y  =  A )
)
98exbii 1774 . . . . . 6  |-  ( E. x ( x  =  A  /\  y  =  x )  <->  E. x
( x  =  A  /\  y  =  A ) )
10 19.41v 1914 . . . . . 6  |-  ( E. x ( x  =  A  /\  y  =  A )  <->  ( E. x  x  =  A  /\  y  =  A
) )
11 simpr 477 . . . . . . 7  |-  ( ( E. x  x  =  A  /\  y  =  A )  ->  y  =  A )
12 eqvisset 3211 . . . . . . . . 9  |-  ( y  =  A  ->  A  e.  _V )
13 elisset 3215 . . . . . . . . 9  |-  ( A  e.  _V  ->  E. x  x  =  A )
1412, 13syl 17 . . . . . . . 8  |-  ( y  =  A  ->  E. x  x  =  A )
1514ancri 575 . . . . . . 7  |-  ( y  =  A  ->  ( E. x  x  =  A  /\  y  =  A ) )
1611, 15impbii 199 . . . . . 6  |-  ( ( E. x  x  =  A  /\  y  =  A )  <->  y  =  A )
179, 10, 163bitri 286 . . . . 5  |-  ( E. x ( x  =  A  /\  y  =  x )  <->  y  =  A )
183, 6, 173bitri 286 . . . 4  |-  ( A  e.  { x  |  y  e.  { x } }  <->  y  =  A )
191, 2, 183bitri 286 . . 3  |-  ( y  e.  { y  | 
[. A  /  x ]. y  e.  { x } }  <->  y  =  A )
20 df-csb 3534 . . . 4  |-  [_ A  /  x ]_ { x }  =  { y  |  [. A  /  x ]. y  e.  { x } }
2120eleq2i 2693 . . 3  |-  ( y  e.  [_ A  /  x ]_ { x }  <->  y  e.  { y  | 
[. A  /  x ]. y  e.  { x } } )
22 velsn 4193 . . 3  |-  ( y  e.  { A }  <->  y  =  A )
2319, 21, 223bitr4i 292 . 2  |-  ( y  e.  [_ A  /  x ]_ { x }  <->  y  e.  { A }
)
2423eqriv 2619 1  |-  [_ A  /  x ]_ { x }  =  { A }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435   [_csb 3533   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-sn 4178
This theorem is referenced by:  bj-csbsn  32899
  Copyright terms: Public domain W3C validator