| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-csbsnlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for bj-csbsn 32899 (in this lemma, |
| Ref | Expression |
|---|---|
| bj-csbsnlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid 2610 |
. . . 4
| |
| 2 | df-sbc 3436 |
. . . 4
| |
| 3 | clelab 2748 |
. . . . 5
| |
| 4 | velsn 4193 |
. . . . . . 7
| |
| 5 | 4 | anbi2i 730 |
. . . . . 6
|
| 6 | 5 | exbii 1774 |
. . . . 5
|
| 7 | eqeq2 2633 |
. . . . . . . 8
| |
| 8 | 7 | pm5.32i 669 |
. . . . . . 7
|
| 9 | 8 | exbii 1774 |
. . . . . 6
|
| 10 | 19.41v 1914 |
. . . . . 6
| |
| 11 | simpr 477 |
. . . . . . 7
| |
| 12 | eqvisset 3211 |
. . . . . . . . 9
| |
| 13 | elisset 3215 |
. . . . . . . . 9
| |
| 14 | 12, 13 | syl 17 |
. . . . . . . 8
|
| 15 | 14 | ancri 575 |
. . . . . . 7
|
| 16 | 11, 15 | impbii 199 |
. . . . . 6
|
| 17 | 9, 10, 16 | 3bitri 286 |
. . . . 5
|
| 18 | 3, 6, 17 | 3bitri 286 |
. . . 4
|
| 19 | 1, 2, 18 | 3bitri 286 |
. . 3
|
| 20 | df-csb 3534 |
. . . 4
| |
| 21 | 20 | eleq2i 2693 |
. . 3
|
| 22 | velsn 4193 |
. . 3
| |
| 23 | 19, 21, 22 | 3bitr4i 292 |
. 2
|
| 24 | 23 | eqriv 2619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-sn 4178 |
| This theorem is referenced by: bj-csbsn 32899 |
| Copyright terms: Public domain | W3C validator |