Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spr0nelg Structured version   Visualization version   Unicode version

Theorem spr0nelg 41726
Description: The empty set is not an element of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
spr0nelg  |-  (/)  e/  {
p  |  E. a E. b  p  =  { a ,  b } }
Distinct variable groups:    p, a    p, b

Proof of Theorem spr0nelg
StepHypRef Expression
1 ianor 509 . . . . . 6  |-  ( -.  ( p  =  (/)  /\ 
E. a E. b  p  =  { a ,  b } )  <-> 
( -.  p  =  (/)  \/  -.  E. a E. b  p  =  { a ,  b } ) )
21bicomi 214 . . . . 5  |-  ( ( -.  p  =  (/)  \/ 
-.  E. a E. b  p  =  { a ,  b } )  <->  -.  ( p  =  (/)  /\ 
E. a E. b  p  =  { a ,  b } ) )
32albii 1747 . . . 4  |-  ( A. p ( -.  p  =  (/)  \/  -.  E. a E. b  p  =  { a ,  b } )  <->  A. p  -.  ( p  =  (/)  /\ 
E. a E. b  p  =  { a ,  b } ) )
4 alnex 1706 . . . 4  |-  ( A. p  -.  ( p  =  (/)  /\  E. a E. b  p  =  {
a ,  b } )  <->  -.  E. p
( p  =  (/)  /\ 
E. a E. b  p  =  { a ,  b } ) )
53, 4bitri 264 . . 3  |-  ( A. p ( -.  p  =  (/)  \/  -.  E. a E. b  p  =  { a ,  b } )  <->  -.  E. p
( p  =  (/)  /\ 
E. a E. b  p  =  { a ,  b } ) )
6 vex 3203 . . . . . . . . 9  |-  a  e. 
_V
76prnz 4310 . . . . . . . 8  |-  { a ,  b }  =/=  (/)
87nesymi 2851 . . . . . . 7  |-  -.  (/)  =  {
a ,  b }
9 eqeq1 2626 . . . . . . 7  |-  ( p  =  (/)  ->  ( p  =  { a ,  b }  <->  (/)  =  {
a ,  b } ) )
108, 9mtbiri 317 . . . . . 6  |-  ( p  =  (/)  ->  -.  p  =  { a ,  b } )
1110alrimivv 1856 . . . . 5  |-  ( p  =  (/)  ->  A. a A. b  -.  p  =  { a ,  b } )
12 2nexaln 1757 . . . . 5  |-  ( -. 
E. a E. b  p  =  { a ,  b }  <->  A. a A. b  -.  p  =  { a ,  b } )
1311, 12sylibr 224 . . . 4  |-  ( p  =  (/)  ->  -.  E. a E. b  p  =  { a ,  b } )
1413imori 429 . . 3  |-  ( -.  p  =  (/)  \/  -.  E. a E. b  p  =  { a ,  b } )
155, 14mpgbi 1725 . 2  |-  -.  E. p ( p  =  (/)  /\  E. a E. b  p  =  {
a ,  b } )
16 df-nel 2898 . . 3  |-  ( (/)  e/ 
{ p  |  E. a E. b  p  =  { a ,  b } }  <->  -.  (/)  e.  {
p  |  E. a E. b  p  =  { a ,  b } } )
17 clelab 2748 . . 3  |-  ( (/)  e.  { p  |  E. a E. b  p  =  { a ,  b } }  <->  E. p
( p  =  (/)  /\ 
E. a E. b  p  =  { a ,  b } ) )
1816, 17xchbinx 324 . 2  |-  ( (/)  e/ 
{ p  |  E. a E. b  p  =  { a ,  b } }  <->  -.  E. p
( p  =  (/)  /\ 
E. a E. b  p  =  { a ,  b } ) )
1915, 18mpbir 221 1  |-  (/)  e/  {
p  |  E. a E. b  p  =  { a ,  b } }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    e/ wnel 2897   (/)c0 3915   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  spr0el  41732
  Copyright terms: Public domain W3C validator