MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compsscnvlem Structured version   Visualization version   Unicode version

Theorem compsscnvlem 9192
Description: Lemma for compsscnv 9193. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
compsscnvlem  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  ( y  e. 
~P A  /\  x  =  ( A  \ 
y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem compsscnvlem
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  y  =  ( A  \  x ) )
2 difss 3737 . . . 4  |-  ( A 
\  x )  C_  A
31, 2syl6eqss 3655 . . 3  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  y  C_  A
)
4 selpw 4165 . . 3  |-  ( y  e.  ~P A  <->  y  C_  A )
53, 4sylibr 224 . 2  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  y  e.  ~P A )
61difeq2d 3728 . . 3  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  ( A  \ 
y )  =  ( A  \  ( A 
\  x ) ) )
7 elpwi 4168 . . . . 5  |-  ( x  e.  ~P A  ->  x  C_  A )
87adantr 481 . . . 4  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  x  C_  A
)
9 dfss4 3858 . . . 4  |-  ( x 
C_  A  <->  ( A  \  ( A  \  x
) )  =  x )
108, 9sylib 208 . . 3  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  ( A  \ 
( A  \  x
) )  =  x )
116, 10eqtr2d 2657 . 2  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  x  =  ( A  \  y ) )
125, 11jca 554 1  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  ( y  e. 
~P A  /\  x  =  ( A  \ 
y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   ~Pcpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by:  compsscnv  9193
  Copyright terms: Public domain W3C validator