MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compsscnv Structured version   Visualization version   Unicode version

Theorem compsscnv 9193
Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
Assertion
Ref Expression
compsscnv  |-  `' F  =  F
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem compsscnv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnvopab 5533 . 2  |-  `' { <. y ,  x >.  |  ( y  e.  ~P A  /\  x  =  ( A  \  y ) ) }  =  { <. x ,  y >.  |  ( y  e. 
~P A  /\  x  =  ( A  \ 
y ) ) }
2 compss.a . . . 4  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
3 difeq2 3722 . . . . 5  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
43cbvmptv 4750 . . . 4  |-  ( x  e.  ~P A  |->  ( A  \  x ) )  =  ( y  e.  ~P A  |->  ( A  \  y ) )
5 df-mpt 4730 . . . 4  |-  ( y  e.  ~P A  |->  ( A  \  y ) )  =  { <. y ,  x >.  |  ( y  e.  ~P A  /\  x  =  ( A  \  y ) ) }
62, 4, 53eqtri 2648 . . 3  |-  F  =  { <. y ,  x >.  |  ( y  e. 
~P A  /\  x  =  ( A  \ 
y ) ) }
76cnveqi 5297 . 2  |-  `' F  =  `' { <. y ,  x >.  |  ( y  e. 
~P A  /\  x  =  ( A  \ 
y ) ) }
8 df-mpt 4730 . . 3  |-  ( x  e.  ~P A  |->  ( A  \  x ) )  =  { <. x ,  y >.  |  ( x  e.  ~P A  /\  y  =  ( A  \  x ) ) }
9 compsscnvlem 9192 . . . . 5  |-  ( ( y  e.  ~P A  /\  x  =  ( A  \  y ) )  ->  ( x  e. 
~P A  /\  y  =  ( A  \  x ) ) )
10 compsscnvlem 9192 . . . . 5  |-  ( ( x  e.  ~P A  /\  y  =  ( A  \  x ) )  ->  ( y  e. 
~P A  /\  x  =  ( A  \ 
y ) ) )
119, 10impbii 199 . . . 4  |-  ( ( y  e.  ~P A  /\  x  =  ( A  \  y ) )  <-> 
( x  e.  ~P A  /\  y  =  ( A  \  x ) ) )
1211opabbii 4717 . . 3  |-  { <. x ,  y >.  |  ( y  e.  ~P A  /\  x  =  ( A  \  y ) ) }  =  { <. x ,  y >.  |  ( x  e.  ~P A  /\  y  =  ( A  \  x ) ) }
138, 2, 123eqtr4i 2654 . 2  |-  F  =  { <. x ,  y
>.  |  ( y  e.  ~P A  /\  x  =  ( A  \ 
y ) ) }
141, 7, 133eqtr4i 2654 1  |-  `' F  =  F
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571   ~Pcpw 4158   {copab 4712    |-> cmpt 4729   `'ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by:  compssiso  9196  isf34lem3  9197  compss  9198  isf34lem5  9200
  Copyright terms: Public domain W3C validator