Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con5VD Structured version   Visualization version   Unicode version

Theorem con5VD 39136
Description: Virtual deduction proof of con5 38728. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con5 38728 is con5VD 39136 without virtual deductions and was automatically derived from con5VD 39136.
1::  |-  (. ( ph  <->  -.  ps )  ->.  ( ph  <->  -.  ps ) ).
2:1:  |-  (. ( ph  <->  -.  ps )  ->.  ( -.  ps  ->  ph ) ).
3:2:  |-  (. ( ph  <->  -.  ps )  ->.  ( -.  ph  ->  -.  -.  ps  ) ).
4::  |-  ( ps  <->  -.  -.  ps )
5:3,4:  |-  (. ( ph  <->  -.  ps )  ->.  ( -.  ph  ->  ps ) ).
qed:5:  |-  ( ( ph  <->  -.  ps )  ->  ( -.  ph  ->  ps ) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
con5VD  |-  ( (
ph 
<->  -.  ps )  -> 
( -.  ph  ->  ps ) )

Proof of Theorem con5VD
StepHypRef Expression
1 idn1 38790 . . . . 5  |-  (. ( ph 
<->  -.  ps )  ->.  ( ph  <->  -. 
ps ) ).
2 biimpr 210 . . . . 5  |-  ( (
ph 
<->  -.  ps )  -> 
( -.  ps  ->  ph ) )
31, 2e1a 38852 . . . 4  |-  (. ( ph 
<->  -.  ps )  ->.  ( -.  ps  ->  ph ) ).
4 con3 149 . . . 4  |-  ( ( -.  ps  ->  ph )  ->  ( -.  ph  ->  -. 
-.  ps ) )
53, 4e1a 38852 . . 3  |-  (. ( ph 
<->  -.  ps )  ->.  ( -.  ph 
->  -.  -.  ps ) ).
6 notnotb 304 . . 3  |-  ( ps  <->  -. 
-.  ps )
7 imbi2 338 . . . 4  |-  ( ( ps  <->  -.  -.  ps )  ->  ( ( -.  ph  ->  ps )  <->  ( -.  ph 
->  -.  -.  ps )
) )
87biimprcd 240 . . 3  |-  ( ( -.  ph  ->  -.  -.  ps )  ->  ( ( ps  <->  -.  -.  ps )  ->  ( -.  ph  ->  ps ) ) )
95, 6, 8e10 38919 . 2  |-  (. ( ph 
<->  -.  ps )  ->.  ( -.  ph 
->  ps ) ).
109in1 38787 1  |-  ( (
ph 
<->  -.  ps )  -> 
( -.  ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-vd1 38786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator